题目内容

已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.
(Ⅰ)(Ⅱ)对称

试题分析:(Ⅰ)由圆方程可知圆心为,即,又因为离心率为,可得,根据椭圆中关系式,可求。椭圆方程即可求出。因为,则右顶点为,将其代入圆的方程可求半径。(Ⅱ)由椭圆方程可知,将代入椭圆方程可得。可得,设直线,然后和椭圆方程联立,消掉y(或x)得到关于x的一元二次方程。再根据韦达定理得出根与系数的关系。可得两直线的斜率。当直线是否关于直线对称时两直线倾斜角互补,所以斜率互为相反数。把求得的两直线斜率相加若为0,则说明两直线对称。否则不对称。
试题解析:(Ⅰ)由题意得,                      1分
可得,                         2分
所以,                           3分
所以椭圆的方程为.                     4分
(Ⅱ)由题意可得点,                 6分
所以由题意可设直线,.            7分

.
由题意可得,即.        8分
.          9分
因为           10分

,          13分
所以直线关于直线对称.                  14分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网