题目内容
已知函数f(x)=log3![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_ST/2.png)
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_ST/3.png)
(Ⅲ)已知an=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_ST/4.png)
【答案】分析:(1)先用
表示出
,再由P是MN的中点可得到x1+x2=1,然后代入到y1+y2=f(x1)+f(x2)结合对数的运算法则即可得到y1+y2=1,得证.
(2)先由(Ⅰ)知当x1+x2=1时,y1+y2=1,然后对
进行倒叙相加即可得到
,再结合x1+x2=1时,y1+y2=1可得到
.
(3)将(2)中的
.代入到an的表达式中进行整理当n≥2时满足
.,然后验证当n=1时满足,再代入到Tn中进行求值,当Tn<m(Sn+1+1)对一切n∈N*都成立时可转化为
恒成立,再由均值不等式可求出m的范围.
解答:解:(1)由已知可得,
,
∴P是MN的中点,有x1+x2=1.
∴y1+y2=f(x1)+f(x2)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/9.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/10.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/11.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/12.png)
=
.
(2)解:由(Ⅰ)知当x1+x2=1时,y1+y2=f(x1)+f(x1)=1
,
,
相加得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/16.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/17.png)
=n-1
∴
.
(3)解:当n≥2时,
.
又当n=1时,
.
∴
.
=
.
由于Tn<m(Sn+1+1)对一切n∈N*都成立,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/24.png)
∵
,当且仅当n=2时,取“=”,
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/26.png)
因此
.
综上可知,m的取值范围是
.
点评:本题主要考查数列求和的倒叙相加法、数列的裂项法和均值不等式的应用.考查对基础知识的综合运用.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/1.png)
(2)先由(Ⅰ)知当x1+x2=1时,y1+y2=1,然后对
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/4.png)
(3)将(2)中的
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/7.png)
解答:解:(1)由已知可得,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/8.png)
∴P是MN的中点,有x1+x2=1.
∴y1+y2=f(x1)+f(x2)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/9.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/10.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/11.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/12.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/13.png)
(2)解:由(Ⅰ)知当x1+x2=1时,y1+y2=f(x1)+f(x1)=1
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/15.png)
相加得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/16.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/17.png)
=n-1
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/18.png)
(3)解:当n≥2时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/19.png)
又当n=1时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/20.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/23.png)
由于Tn<m(Sn+1+1)对一切n∈N*都成立,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/24.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/25.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/26.png)
因此
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/27.png)
综上可知,m的取值范围是
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565160505/SYS201310232129285651605019_DA/28.png)
点评:本题主要考查数列求和的倒叙相加法、数列的裂项法和均值不等式的应用.考查对基础知识的综合运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目