题目内容
过点(-1,0)作抛物线的切线,则其中一条切线为
A. B. C. D.
D
已知点D(0,-2),过点D作抛线C1:x2=2py(p>0)的切线l,切点A在第一象限,如图.
(1)求切点A的纵坐标;
(2)若离心率为的椭圆恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k1,k2,若2k1+k2=3k,求抛物线C1和椭圆C2的方程.
(3)设P、Q分别是(2)中的椭圆C2的右顶点和上顶点,M是椭圆C2在第一象限的任意一点,求四边形OPMQ面积的最大值以及此时M点的坐标.
(1)求该抛物线上纵坐标为的点到其焦点F的距离;
(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.