题目内容

【题目】在正方体ABCD﹣A1B1C1D1中,E是A1B1上一点,若平面EBD与平面ABCD所成锐二面角的正切值为 ,设三棱锥A﹣A1D1E外接球的直径为a,则 =

【答案】
【解析】解:过E作EF∥AA1交AB于F,过F作FG⊥BD于G,连接EG,则∠EGF为平面EBD与平面AB﹣CD所成锐二面角的平面角,∵ ,∴

设AB=3,则EF=3,∴ ,则BF=2=B1E,

∴A1E=1,则三棱锥A﹣A1D1E外接球的直径

所以答案是

【考点精析】认真审题,首先需要了解棱柱的结构特征(两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形),还要掌握球内接多面体(球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网