题目内容
已知,,
(1)求函数的解析式,并求它的单调递增区间;
(2)若有四个不相等的实数根,求的取值范围。
【答案】
(1),递增区间是;(2).
【解析】
试题分析:(1)由于与都是分段函数,故在求时,要注意两个函数中不同的自变量的取值集合,单调区间当然要每段中都要考察;(2)方程有几个实根时,求参数的范围,一般可利用函数的图象求解.方程的解可以看作是函数的图象与直线的交点的横坐标,从而方程有4个解等价于函数的图象与直线有4个交点.
试题解析:(1) 5分
递增区间是2分
(2)如图所求,作出函数函数的图象与直线 4分
由图可得有四个不相等的实数根时的取值范围是 3分
考点:(1)分段函数的解析式,单调区间;(2)方程解的个数问题.
练习册系列答案
相关题目