题目内容
如图,已知斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,BC=2,AC=2
,AB=2
,AA1=A1C=
.
(Ⅰ) 设AC的中点为D,证明A1D⊥底面ABC;
(Ⅱ) 求异面直线A1C与AB成角的余弦值.
3 |
2 |
6 |
(Ⅰ) 设AC的中点为D,证明A1D⊥底面ABC;
(Ⅱ) 求异面直线A1C与AB成角的余弦值.
分析:(Ⅰ)利用平面A1ACC1⊥平面ABC,可证A1D⊥底面ABC;
(Ⅱ)过B作AC的垂线BE,垂足为E,以D为原点,A1D所在直线为x轴,DC所在直线为y轴,平行于BE的直线为x轴,建立空间直角坐标系,通过计算求出向量
,
的坐标,利用向量的夹角公式即可求得.
(Ⅱ)过B作AC的垂线BE,垂足为E,以D为原点,A1D所在直线为x轴,DC所在直线为y轴,平行于BE的直线为x轴,建立空间直角坐标系,通过计算求出向量
A1C |
AB |
解答:(Ⅰ)证明:∵AC=2
,AA1=A1C=
,∴AC2=AA12+A1C2,
∴△AA1C是等腰直角三角形,
又D是斜边AC的中点,∴A1D⊥AC,
∵平面A1ACC1⊥平面ABC,∴A1D⊥底面ABC;
(Ⅱ)∵BC=2,AC=2
,AB=2
,AC2=AB2+BC2,
∴三角形ABC是直角三角形,过B作AC的垂线BE,垂足为E,
则BE=
=
=
,EC=
=
=
,
∴DE=CD-EC=
-
=
,
以D为原点,A1D所在直线为x轴,DC所在直线为y轴,平行于BE的直线为x轴,建立空间直角坐标系,如图所示:
则A(0,-
,0),A1(0,0,
),B(
,
,0),C(0,
,0),
=(0,
,-
),
=(
,
,0),
所以cos<
,
>=
=
,
故所求余弦值为
.
3 |
6 |
∴△AA1C是等腰直角三角形,
又D是斜边AC的中点,∴A1D⊥AC,
∵平面A1ACC1⊥平面ABC,∴A1D⊥底面ABC;
(Ⅱ)∵BC=2,AC=2
3 |
2 |
∴三角形ABC是直角三角形,过B作AC的垂线BE,垂足为E,
则BE=
AB•BC |
AC |
2•2
| ||
2
|
2
| ||
3 |
BC2-BE2 |
4-
|
2
| ||
3 |
∴DE=CD-EC=
3 |
2
| ||
3 |
| ||
3 |
以D为原点,A1D所在直线为x轴,DC所在直线为y轴,平行于BE的直线为x轴,建立空间直角坐标系,如图所示:
则A(0,-
3 |
3 |
2
| ||
3 |
| ||
3 |
3 |
A1C |
3 |
3 |
AB |
2
| ||
3 |
4
| ||
3 |
所以cos<
A1C |
AB |
| ||||
|
|
| ||
3 |
故所求余弦值为
| ||
3 |
点评:本题考查空间中直线与平面所成的角、异面直线所成的角,考查空间向量在立体几何中的应用,考查学生的计算能力.
练习册系列答案
相关题目