ÌâÄ¿ÄÚÈÝ
£¨¼×£©Èçͼ£¬ÒÑ֪бÈýÀâÖùABC-A1B1C1µÄ²àÃæA1C¡Íµ×ÃæABC£¬¡ÏABC=90¡ã£¬BC=2£¬AC=23 |
£¨1£©Çó²àÀâA1AÓëµ×ÃæABCËù³ÉµÄ½ÇµÄ´óС£»
£¨2£©Çó²àÃæA1BÓëµ×ÃæËù³É¶þÃæ½ÇµÄ´óС£»
£¨3£©ÇóµãCµ½²àÃæA1BµÄ¾àÀ룮
£¨ÒÒ£©ÔÚÀⳤΪaµÄÕý·½ÌåOABC-O'A'B'C'ÖУ¬E£¬F·Ö±ðÊÇÀâAB£¬BCÉϵĶ¯µã£¬ÇÒAE=BF£®
£¨1£©ÇóÖ¤£ºA'F¡ÍC'E£»
£¨2£©µ±ÈýÀâ׶B'-BEFµÄÌå»ýÈ¡µÃ×î´óֵʱ£¬Çó¶þÃæ½ÇB'-EF-BµÄ´óС£¨½á¹ûÓ÷´Èý½Çº¯Êý±íʾ£©£®
·ÖÎö£º¼×£¨1£©ÓÉÌâÒ⻳öͼÐÎÓÉÓÚ²àÃæA1C¡Íµ×ÃæABC£¬ËùÒÔA1AÓëµ×ÃæABCËù³ÉµÄ½ÇΪ¡ÏA1AC£¬½â³ö¼´¿É£»
£¨2£©ÓÉÌâÒ⼰ͼÐÎÀûÓöþÃæ½ÇƽÃæ½ÇµÄ¸ÅÄî¼´¿ÉÇó¶þÃæ½ÌµÄ´óС£»
£¨3£©ÓÉÌâÒâÀûÓÃÈýÀâ׶µÄµÈÌå»ý½øÐÐÂÖ»»¿ÉµÃ¾àÀ룮
ÒÒ£¨1£©ÓÉÓÚ¼¸ºÎÌåΪ³¤·½Ì壬ÀûÓÃÌõ¼þ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬Ð´³ö¸÷¸öµãµÄ¿Õ¼ä×ø±êÀûÓÃÏòÁ¿µÄ֪ʶºÍµÈÌå»ý·¨Çó³ö¾àÀ룻
£¨2£©ÀûÓÃÌõ¼þ¼°Ëù¸øͼÐÎÀûÓöþÃæ½ÇµÄƽÃæ½ÇµÄ¶¨Ò壬Éè³öBF=x£¬BE=y£¬Ôòx+y=a£¬ÀûÓþùÖµ²»µÈʽÇó³öBE£¬BFµÄ³¤¶È£¬ÔÙÔÚÈý½ÇÏßÖнøÐÐÇó½â³ö¶þÃæ½ÇµÄ´óС£®
£¨2£©ÓÉÌâÒ⼰ͼÐÎÀûÓöþÃæ½ÇƽÃæ½ÇµÄ¸ÅÄî¼´¿ÉÇó¶þÃæ½ÌµÄ´óС£»
£¨3£©ÓÉÌâÒâÀûÓÃÈýÀâ׶µÄµÈÌå»ý½øÐÐÂÖ»»¿ÉµÃ¾àÀ룮
ÒÒ£¨1£©ÓÉÓÚ¼¸ºÎÌåΪ³¤·½Ì壬ÀûÓÃÌõ¼þ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬Ð´³ö¸÷¸öµãµÄ¿Õ¼ä×ø±êÀûÓÃÏòÁ¿µÄ֪ʶºÍµÈÌå»ý·¨Çó³ö¾àÀ룻
£¨2£©ÀûÓÃÌõ¼þ¼°Ëù¸øͼÐÎÀûÓöþÃæ½ÇµÄƽÃæ½ÇµÄ¶¨Ò壬Éè³öBF=x£¬BE=y£¬Ôòx+y=a£¬ÀûÓþùÖµ²»µÈʽÇó³öBE£¬BFµÄ³¤¶È£¬ÔÙÔÚÈý½ÇÏßÖнøÐÐÇó½â³ö¶þÃæ½ÇµÄ´óС£®
½â´ð£º£¨¼×£©£¨1£©¡ß²àÃæA1C¡Íµ×ÃæABC£¬¡àA1AÔÚƽÃæABCÉϵÄÉäÓ°ÊÇAC¡¢A1AÓëµ×ÃæABCËù³ÉµÄ½ÇΪ¡ÏA1AC£®
¡ßA1A=A1C£¬A1A¡ÍA1C£¬¡à¡ÏA1AC=45¡ã£®
£¨2£©×÷A1O¡ÍACÓÚO£¬ÔòA1O¡ÍƽÃæABC£¬ÔÙ×÷OE¡ÍABÓÚE£¬Á¬½ÓA1E£¬ÔòA1E¡ÍAB£¬
ËùÒÔ¡ÏA1EO¾ÍÊDzàÃæA1BÓëµ×ÃæABCËù³É¶þÃæ½ÇµÄƽÃæ½Ç£®
ÔÚRt¡÷A1EOÖУ¬A1O=
AC=
£¬OE=
BC=1£¬
¡àtan¡ÏA1EO=
=
£®¡ÏA1EO=60¡ã£®
£¨3£©ÉèµãCµ½²àÃæA1BµÄ¾àÀëΪx£®
¡ßVA1-ABC=VC-A1BC£¬
¡à
•A1O•S¡÷ABC=
•x•S¡÷A1BC?A1O•S¡÷ABC=x•S¡÷ABC£®£¨*£©
¡ßA1O=
£¬OE=1£¬¡àA1E=
=2£®
ÓÖAB=
=2
£¬¡àS¡÷A1AB=
•2
•2=2
£®
ÓÖS¡÷ABC=
¡Á2¡Á2
=2
£®¡àÓÉ£¨*£©Ê½£¬µÃ2
=x•2
=1£®¡àx=1
£¨ÒÒ£©£¨1£©Ö¤Ã÷£ºÈçͼ£¬ÒÔOΪԵ㽨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£®
ÉèAE=BF=x£¬ÔòA'£¨a£¬0£¬a£©£¬F£¨a-x£¬a£¬0£©£¬C'£¨0£¬a£¬a£©£¬E£¨a£¬x£¬0£©£¬
¡à
=£¨-x£¬a£¬-a£©£¬
=£¨a£¬x-a£¬-a£©£®
¡ß
•
=-xa+a(x-a)+a2=0£¬
¡àA'F¡ÍC'E£®
£¨2£©½â£º¼ÇBF=x£¬BE=y£¬Ôòx+y=a£¬ÔòÈýÀâ׶B'-BEFµÄÌå»ýΪV=
xya¡Ü
(
)2=
a2£®
µ±ÇÒ½öµ±x=y=
ʱ£¬µÈºÅ³ÉÁ¢£¬Òò´Ë£¬ÈýÀâ׶B'-BEFµÄÌå»ýÈ¡µÃ×î´óֵʱ£¬BE=BF=
£®
¹ýB×÷BD¡ÍBF½»EFÓÚD£¬Á¬½ÓB'D£¬ÔòB'D¡ÍEF£®
¡à¡ÏB'DBÊǶþÃæ½ÇB'-EF-BµÄƽÃæ½Ç£®ÔÚRt¡÷BEFÖУ¬Ö±½Ç±ßBE=BF=
£¬BDÊÇб±ßÉϵĸߣ¬¡àBD=
ÔÚRt¡÷B'DBÖУ¬tan¡ÏB¡äDB=
=2
£®¹Ê¶þÃæ½ÇB'-EF-BµÄ´óСΪarctan2
£®
¡ßA1A=A1C£¬A1A¡ÍA1C£¬¡à¡ÏA1AC=45¡ã£®
£¨2£©×÷A1O¡ÍACÓÚO£¬ÔòA1O¡ÍƽÃæABC£¬ÔÙ×÷OE¡ÍABÓÚE£¬Á¬½ÓA1E£¬ÔòA1E¡ÍAB£¬
ËùÒÔ¡ÏA1EO¾ÍÊDzàÃæA1BÓëµ×ÃæABCËù³É¶þÃæ½ÇµÄƽÃæ½Ç£®
ÔÚRt¡÷A1EOÖУ¬A1O=
1 |
2 |
3 |
1 |
2 |
¡àtan¡ÏA1EO=
A1O |
OE |
3 |
£¨3£©ÉèµãCµ½²àÃæA1BµÄ¾àÀëΪx£®
¡ßVA1-ABC=VC-A1BC£¬
¡à
1 |
3 |
1 |
3 |
¡ßA1O=
3 |
3+1 |
ÓÖAB=
(2
|
2 |
1 |
2 |
2 |
2 |
ÓÖS¡÷ABC=
1 |
2 |
2 |
2 |
2 |
2 |
£¨ÒÒ£©£¨1£©Ö¤Ã÷£ºÈçͼ£¬ÒÔOΪԵ㽨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£®
ÉèAE=BF=x£¬ÔòA'£¨a£¬0£¬a£©£¬F£¨a-x£¬a£¬0£©£¬C'£¨0£¬a£¬a£©£¬E£¨a£¬x£¬0£©£¬
¡à
A¡äF |
C¡äE |
¡ß
A¡äF |
C¡äE |
¡àA'F¡ÍC'E£®
£¨2£©½â£º¼ÇBF=x£¬BE=y£¬Ôòx+y=a£¬ÔòÈýÀâ׶B'-BEFµÄÌå»ýΪV=
1 |
6 |
a |
b |
x+y |
2 |
1 |
24 |
µ±ÇÒ½öµ±x=y=
a |
2 |
a |
2 |
¹ýB×÷BD¡ÍBF½»EFÓÚD£¬Á¬½ÓB'D£¬ÔòB'D¡ÍEF£®
¡à¡ÏB'DBÊǶþÃæ½ÇB'-EF-BµÄƽÃæ½Ç£®ÔÚRt¡÷BEFÖУ¬Ö±½Ç±ßBE=BF=
a |
2 |
| ||
4 |
ÔÚRt¡÷B'DBÖУ¬tan¡ÏB¡äDB=
B¡äB |
BD |
2 |
2 |
µãÆÀ£º¼×£¨1£©´ËÎÊÖص㿼²éÁËÃæÃæ´¹Ö±µÄÐÔÖʶ¨Àí¼°ÏßÃæ½ÇµÄ¶¨Ò壻
£¨2£©´ËÎÊÖص㿼²éÁ˶þÃæ½ÇµÄƽÃæ½ÇµÄ¸ÅÄî¼°ÔÚÈý½ÇÐÎÖÐÇó½âÈý½ÇÐεĽǵĴóС£»
£¨3£©´ËÎÊÖص㿼²éÁËÀûÓÃÈýÀâ׶µÄµÈÌå»ý¿ÉÒÔ½øÐж¨µãÂÖ»»ÇóÆäÌå»ý½ø¶ø¿ÉÒÔÇóµãµ½ÃæµÄ¾àÀ룮
ÒÒ£¨1£©´ËÎÊÖص㿼²éÁËÀûÓó¤·½ÌåµÄÌص㽨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£®ÀûÓÃÏòÁ¿µÄ֪ʶ½â¾öÏßÏß´¹Ö±µÄÖ¤Ã÷£»
£¨2£©´ËÎÊÖص㿼²éÁËÀûÓÃÏòÁ¿µÄ֪ʶºÍÉè³ö±äÁ¿ÀûÓþùÖµ²»µÈʽµÄÇó³ö×îֵʱµÄÏ߶γ¤¶È£¬½ø¶øÇó½â³ö¶þÃæ½ÇµÄ´óС£¬»¹¿¼²éÁË·´Èý½ÇµÄ֪ʶ£®
£¨2£©´ËÎÊÖص㿼²éÁ˶þÃæ½ÇµÄƽÃæ½ÇµÄ¸ÅÄî¼°ÔÚÈý½ÇÐÎÖÐÇó½âÈý½ÇÐεĽǵĴóС£»
£¨3£©´ËÎÊÖص㿼²éÁËÀûÓÃÈýÀâ׶µÄµÈÌå»ý¿ÉÒÔ½øÐж¨µãÂÖ»»ÇóÆäÌå»ý½ø¶ø¿ÉÒÔÇóµãµ½ÃæµÄ¾àÀ룮
ÒÒ£¨1£©´ËÎÊÖص㿼²éÁËÀûÓó¤·½ÌåµÄÌص㽨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£®ÀûÓÃÏòÁ¿µÄ֪ʶ½â¾öÏßÏß´¹Ö±µÄÖ¤Ã÷£»
£¨2£©´ËÎÊÖص㿼²éÁËÀûÓÃÏòÁ¿µÄ֪ʶºÍÉè³ö±äÁ¿ÀûÓþùÖµ²»µÈʽµÄÇó³ö×îֵʱµÄÏ߶γ¤¶È£¬½ø¶øÇó½â³ö¶þÃæ½ÇµÄ´óС£¬»¹¿¼²éÁË·´Èý½ÇµÄ֪ʶ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿