ÌâÄ¿ÄÚÈÝ
£¨ÎÄ£©ÒÑÖªµãP1£¨a1£¬b1£©£¬P2£¨a2£¬b2£©£¬¡£¬Pn£¨an£¬bn£©£¨nΪÕýÕûÊý£©¶¼ÔÚº¯Êýy=ax£¨a£¾0£¬a¡Ù1£©µÄͼÏóÉÏ£¬ÆäÖÐ{an}ÊÇÒÔ1ΪÊ×Ï2Ϊ¹«²îµÄµÈ²îÊýÁУ®£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£¬²¢Ö¤Ã÷ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©ÉèÊýÁÐ{bn}µÄÇ°nÏîµÄºÍSn£¬Çó
lim |
n¡ú¡Þ |
Sn |
Sn+1 |
£¨3£©ÉèQn£¨an£¬0£©£¬µ±a=
2 |
3 |
·ÖÎö£º£¨1£©Ö±½ÓÀûÓö¨Òå¼´¿ÉÇóÊýÁÐ{an}µÄͨÏʽ£¬ÔÙ´úÈëÇó³öÊýÁÐ{bn}µÄͨÏʽ£¬Óö¨Òå¼´¿ÉÖ¤Ã÷ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©ÏÈÖ±½Ó´úÈ빫ʽÇó³öSnÒÔ¼°
µÄ±í´ïʽ£¬ÔÙ·ÖaµÄ²»Í¬È¡ÖµÀ´Çó½áÂÛ¼´¿É£»
£¨3£©ÏÈÕÒµ½¡÷OPnQnµÄÃæ»ýµÄ±í´ïʽ£¬Éè³ö¶ÔÓ¦ÊýÁУ¬ÔÙÀûÓÃÇóÊýÁÐ×î´óÏîµÄ·½·¨Çó³ö¡÷OPnQnµÄÃæ»ýµÄ×î´óÖµ¼´¿É£®
£¨2£©ÏÈÖ±½Ó´úÈ빫ʽÇó³öSnÒÔ¼°
sn |
sn+1 |
£¨3£©ÏÈÕÒµ½¡÷OPnQnµÄÃæ»ýµÄ±í´ïʽ£¬Éè³ö¶ÔÓ¦ÊýÁУ¬ÔÙÀûÓÃÇóÊýÁÐ×î´óÏîµÄ·½·¨Çó³ö¡÷OPnQnµÄÃæ»ýµÄ×î´óÖµ¼´¿É£®
½â´ð£º½â£º£¨1£©an=2n-1£¬£¨n¡ÊN*£©£¬bn=aan=a2n-1£¬
¡à
=a2(¶¨Öµ)£¬
¡àÊýÁÐ{bn}ÊǵȱÈÊýÁУ®
£¨2£©ÒòΪ{bn}ÊǵȱÈÊýÁУ¬ÇÒ¹«±Èa2¡Ù1£¬
¡àSn=
£¬
=
£®
µ±0£¼a£¼1ʱ£¬
=1£»
µ±a£¾1ʱ£¬
=
=
=
£®
Òò´Ë£¬
=
£®
£¨3£©bn=(
)2n-1£¬S¡÷=
•(2n-1)•(
)2n-1£¬
Éècn=
•(2n-1)•(
)2n-1£¬
µ±cn×î´óʱ£¬Ôò
£¬
½âµÃ
£¬n¡ÊN*£¬¡àn=2£®
ËùÒÔn=2ʱcnÈ¡µÃ×î´óÖµ
£¬
Òò´Ë¡÷OPnQnµÄÃæ»ý´æÔÚ×î´óÖµ
£®
¡à
bn+1 |
bn |
¡àÊýÁÐ{bn}ÊǵȱÈÊýÁУ®
£¨2£©ÒòΪ{bn}ÊǵȱÈÊýÁУ¬ÇÒ¹«±Èa2¡Ù1£¬
¡àSn=
a(1-a2n) |
1-a2 |
Sn |
Sn+1 |
1-a2n |
1-a2n+2 |
µ±0£¼a£¼1ʱ£¬
lim |
n¡ú¡Þ |
Sn |
Sn+1 |
µ±a£¾1ʱ£¬
lim |
n¡ú¡Þ |
Sn |
Sn+1 |
lim |
n¡ú¡Þ |
1-a2n |
1-a2n+2 |
lim |
n¡ú¡Þ |
| ||
|
1 |
a2 |
Òò´Ë£¬
lim |
n¡ú¡Þ |
Sn |
Sn+1 |
|
£¨3£©bn=(
2 |
3 |
1 |
2 |
2 |
3 |
Éècn=
1 |
2 |
2 |
3 |
µ±cn×î´óʱ£¬Ôò
|
½âµÃ
|
ËùÒÔn=2ʱcnÈ¡µÃ×î´óÖµ
4 |
9 |
Òò´Ë¡÷OPnQnµÄÃæ»ý´æÔÚ×î´óÖµ
4 |
9 |
µãÆÀ£º±¾Ì⿼²éµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеĻù´¡ÖªÊ¶£¬ÊýÁÐ×î´óÏîµÄÇ󷨺ÍÊýÁеļ«ÏÞ£®ÖªÊ¶µã½Ï¶à£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿