题目内容

(2012•包头三模)函数y=sin(ωx+φ)(ω>0且|φ|<
π
2
)
在区间[
π
6
3
]
上单调递减,且函数值从1减小到-1,那么此函数图象与y轴交点的纵坐标为(  )
分析:依题意,利用正弦函数的单调性可求得y=sin(ωx+φ)的解析式,从而可求得此函数图象与y轴交点的纵坐标.
解答:解:∵函数y=sin(ωx+φ)在区间[
π
6
3
]上单调递减,且函数值从1减小到-1,
T
2
=
3
-
π
6
=
π
2

∴T=π,又T=
ω

∴ω=2,
又sin(2×
π
6
+φ)=1,
π
3
+φ=2kπ+
π
2
,k∈Z.
∴φ=2kπ+
π
6
,k∈Z.
∵|φ|<
π
2

∴φ=
π
6

∴y=sin(2x+
π
6
),
令x=0,有y=sin
π
6
=
1
2

∴此函数图象与y轴交点的纵坐标为
1
2

故选A.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求得ω与φ的值是关键,也是难点,考查分析与理解应用的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网