题目内容

【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别为棱BB1、BC的中点,则异面直线AB1与EF所成角的大小为(
A.30°
B.45°
C.60°
D.90°

【答案】C
【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,

设正方体ABCD﹣A1B1C1D1中棱长为2,

则A(2,0,0),B1(2,2,2),E(2,2,1),F(1,2,0),

=(0,2,2), =(﹣1,0,﹣1),

设异面直线AB1与EF所成角的大小为θ,

则cosθ=|cos< >|= = =

∴θ=60°,

∴异面直线AB1与EF所成角的大小为60°.

故选:C.

【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网