题目内容

(本小题满分12分)已知数列{an}的前n项和为Sn, 且满足条件:4S n =+ 4n – 1 , nÎN*.

(1) 证明:(a n– 2)2=0 (n ³ 2);(2) 满足条件的数列不惟一,试至少求出数列{an}的的3个不同的通项公式 .

(2) 当a1 =1且a n + an – 1 = 2时,得an =1.  2)当a1 =1且a n – a n – 1  = 2 时,得an = 2n–1 .

      3)当a1 =3且a n – a n – 1  = 2 时,得an = 2n + 1 .     4)当a1 =3且a n + an – 1 = 2时,得an =2(–1)n+ 1 + 1.


解析:

(1) 由条件4S n =+ 4n – 1 , nÎN*.得4S n – 1 =+ 4(n – 1 ) – 1,

相减得:4a n  =  + 4,化成–4a n+ 4–= 0,

∴ (a n– 2)2=0 .     4分

   (2) 由(1)得:(a n –2 + an – 1 )(a n –2 – a n – 1 ) = 0∴ a n + an – 1 = 2  或a n – a n – 1  = 2 . 2分

在4S n =+ 4n – 1中,令n = 1,得4a1 =+ 4 – 1,解得:a1 =1或 a1 =3.  2分

      分四种情况:

      1)当a1 =1且a n + an – 1 = 2时,得an =1.

      2)当a1 =1且a n – a n – 1  = 2 时,得an = 2n–1 .

      3)当a1 =3且a n – a n – 1  = 2 时,得an = 2n + 1 .

      4)当a1 =3且a n + an – 1 = 2时,得an =2(–1)n+ 1 + 1. 每个1分,有3个即可

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网