ÌâÄ¿ÄÚÈÝ
¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©º¯Êýf(x)=log3(x2-2x)µÄµ¥µ÷¼õÇø¼äΪ£¨-¡Þ£¬1£©£»
£¨2£©ÒÑÖªP£º|2x-3|£¾1£¬q£º
£¾0£¬ÔòpÊÇqµÄ±ØÒª²»³ä·ÖÌõ¼þ£»
£¨3£©ÃüÌâ¡°?x¡ÊR£¬sinx¡Ü
¡±µÄ·ñ¶¨ÊÇ£º¡°?x¡ÊR£¬sinx£¾¡±£»
£¨4£©ÒÑÖªº¯Êýf(x)=
sin¦Øx+cos¦Øx(¦Ø£¾0)£¬y=f£¨x£©µÄͼÏóÓëÖ±Ïßy=2µÄÁ½¸öÏàÁÚ½»µãµÄ¾àÀëµÈÓڦУ¬Ôòy=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ[k¦Ð-
£¬k¦Ð+
]£¬k¡Êz£»
£¨5£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¨n+1£©£¨n+2£©¡£¨n+n£©=2n•1•3¡£¨2n-1£©£¨n¡ÊN*£©Ê±£¬´Ó¡°k¡±µ½¡°k+1¡±µÄÖ¤Ã÷£¬×ó±ßÐèÔöÌíµÄÒ»¸öÒòʽÊÇ2£¨2k+1£©£»
ÆäÖÐËùÓÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
£¨1£©º¯Êýf(x)=log3(x2-2x)µÄµ¥µ÷¼õÇø¼äΪ£¨-¡Þ£¬1£©£»
£¨2£©ÒÑÖªP£º|2x-3|£¾1£¬q£º
1 |
x2+x-6 |
£¨3£©ÃüÌâ¡°?x¡ÊR£¬sinx¡Ü
1 |
2 |
£¨4£©ÒÑÖªº¯Êýf(x)=
3 |
¦Ð |
3 |
¦Ð |
6 |
£¨5£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¨n+1£©£¨n+2£©¡£¨n+n£©=2n•1•3¡£¨2n-1£©£¨n¡ÊN*£©Ê±£¬´Ó¡°k¡±µ½¡°k+1¡±µÄÖ¤Ã÷£¬×ó±ßÐèÔöÌíµÄÒ»¸öÒòʽÊÇ2£¨2k+1£©£»
ÆäÖÐËùÓÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
·ÖÎö£º£¨1£©ÀûÓöÔÊýº¯ÊýµÄ¶¨ÒåÓò¼´¿ÉÅжϣ¨1£©µÄÕýÎó£»
£¨2£©Í¨¹ý½â²»µÈʽ
£¾0¿ÉÇóµÃÌõ¼þq£¬Í¨¹ý½â¾ø¶ÔÖµ²»µÈʽ|2x-3|£¾1¿ÉÇóµÃÌõ¼þp£¬ÀûÓóä·ÖÌõ¼þÓë±ØÒªÌõ¼þµÄ¸ÅÄî¼´¿ÉÅжÏÆäÕýÎó£»
£¨3£©ÀûÓÃÃüÌâµÄ·ñ¶¨¿ÉÅжϣ¨3£©£»
£¨4£©ÓÉf£¨x£©=2sin£¨¦Øx+
£©µÄͼÏóÓëÖ±Ïßy=2µÄÁ½¸öÏàÁÚ½»µãµÄ¾àÀëµÈÓڦпÉÇóµÃ¦Ø£¬´Ó¶ø¿ÉÇóy=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£¬¼Ì¶ø¿ÉÅÐÆäÕýÎó£»
£¨5£©ÀûÓÃÊýѧ¹éÄÉ·¨£¬¼´¿ÉÖªÖ¤Ã÷£¨n+1£©£¨n+2£©¡£¨n+n£©=2n•1•3¡£¨2n-1£©£¨n¡ÊN*£©Ê±£¬´Ó¡°k¡±µ½¡°k+1¡±µÄÖ¤Ã÷ÖУ¬×ó±ßÐèÔöÌíµÄÒ»¸öÒòʽ£¬´Ó¶ø¿ÉÅÐÆäÕýÎó£®
£¨2£©Í¨¹ý½â²»µÈʽ
1 |
x2+x-6 |
£¨3£©ÀûÓÃÃüÌâµÄ·ñ¶¨¿ÉÅжϣ¨3£©£»
£¨4£©ÓÉf£¨x£©=2sin£¨¦Øx+
¦Ð |
6 |
£¨5£©ÀûÓÃÊýѧ¹éÄÉ·¨£¬¼´¿ÉÖªÖ¤Ã÷£¨n+1£©£¨n+2£©¡£¨n+n£©=2n•1•3¡£¨2n-1£©£¨n¡ÊN*£©Ê±£¬´Ó¡°k¡±µ½¡°k+1¡±µÄÖ¤Ã÷ÖУ¬×ó±ßÐèÔöÌíµÄÒ»¸öÒòʽ£¬´Ó¶ø¿ÉÅÐÆäÕýÎó£®
½â´ð£º½â£º£¨1£©ÓÉx2-2£¾0µÃx£¾
»òx£¼-
£¬
Óɸ´ºÏº¯ÊýµÄµ¥µ÷ÐÔÖª£¬f£¨x£©=log3(x2-2x)ÔÚ£¨-¡Þ£¬-
£©Éϵ¥µ÷µÝ¼õ£¬¹Ê£¨1£©´íÎó£»
£¨2£©ÓÉ
£¾0µÃx£¾2»òx£¼-3£¬¼´Ìõ¼þqΪ£ºx£¾2»òx£¼-3£¬¼´Q={x|x£¾2»òx£¼-3}£»
ÓÉ|2x-3|£¾1µÃx£¾2»òx£¼-1£¬¼´Ìõ¼þpΪ£ºx£¾2»òx£¼-1£¬¼´P={x|x£¾2»òx£¼-1}£»
ÏÔÈ»£¬Q?P£¬
¡àq⇒p£¬·´Ö®²»ÐУ¬
¡àpÊÇqµÄ±ØÒª²»³ä·ÖÌõ¼þ£¬¹Ê£¨2£©ÕýÈ·£»
£¨3£©ÃüÌâ¡°?x¡ÊR£¬sinx¡Ü
¡±µÄ·ñ¶¨ÊÇ£º¡°?x¡ÊR£¬sinx£¾
¡±ÕýÈ·£»
£¨4£©¡ßf£¨x£©=
sin¦Øx+cos¦Øx=2sin£¨¦Øx+
£©£¬ÇÒÆäͼÏóÓëÖ±Ïßy=2µÄÁ½¸öÏàÁÚ½»µãµÄ¾àÀëµÈÓڦпÉÇóµÃ¦Ø£¬
¡àT=¦Ð£¬¦Ø=2£¬
¡àf£¨x£©=2sin£¨2x+
£©£¬
ÓÉ2k¦Ð-
¡Ü2x+
¡Ü2k¦Ð+
µÃ£ºk¦Ð-
¡Üx¡Ük¦Ð+
£¨k¡ÊZ£©£¬
¡ày=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ[k¦Ð-
£¬k¦Ð+
]£¨k¡ÊZ£©£¬¹Ê£¨4£©ÕýÈ·£»
£¨5£©ÓÉÊýѧ¹éÄÉ·¨Ö¤Ã÷£¨n+1£©£¨n+2£©¡£¨n+n£©=2n•1•3¡£¨2n-1£©£¨n¡ÊN*£©Ê±£¬´Ó¡°k¡±µ½¡°k+1¡±µÄÖ¤Ã÷£¬×ó±ßÐèÔöÌíµÄÒ»¸öÒòʽÊÇ
=2£¨2k+1£©£¬¹Ê£¨5£©ÕýÈ·£®
×ÛÉÏËùÊö£¬ËùÓÐÕýÈ·µÄ¸öÊýÊÇ4¸ö£®
¹ÊÑ¡D£®
2 |
2 |
Óɸ´ºÏº¯ÊýµÄµ¥µ÷ÐÔÖª£¬f£¨x£©=log3(x2-2x)ÔÚ£¨-¡Þ£¬-
2 |
£¨2£©ÓÉ
1 |
x2+x-6 |
ÓÉ|2x-3|£¾1µÃx£¾2»òx£¼-1£¬¼´Ìõ¼þpΪ£ºx£¾2»òx£¼-1£¬¼´P={x|x£¾2»òx£¼-1}£»
ÏÔÈ»£¬Q?P£¬
¡àq⇒p£¬·´Ö®²»ÐУ¬
¡àpÊÇqµÄ±ØÒª²»³ä·ÖÌõ¼þ£¬¹Ê£¨2£©ÕýÈ·£»
£¨3£©ÃüÌâ¡°?x¡ÊR£¬sinx¡Ü
1 |
2 |
1 |
2 |
£¨4£©¡ßf£¨x£©=
3 |
¦Ð |
6 |
¡àT=¦Ð£¬¦Ø=2£¬
¡àf£¨x£©=2sin£¨2x+
¦Ð |
6 |
ÓÉ2k¦Ð-
¦Ð |
2 |
¦Ð |
6 |
¦Ð |
2 |
¦Ð |
3 |
¦Ð |
6 |
¡ày=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ[k¦Ð-
¦Ð |
3 |
¦Ð |
6 |
£¨5£©ÓÉÊýѧ¹éÄÉ·¨Ö¤Ã÷£¨n+1£©£¨n+2£©¡£¨n+n£©=2n•1•3¡£¨2n-1£©£¨n¡ÊN*£©Ê±£¬´Ó¡°k¡±µ½¡°k+1¡±µÄÖ¤Ã÷£¬×ó±ßÐèÔöÌíµÄÒ»¸öÒòʽÊÇ
(2k+1)(2k+2) |
k+1 |
×ÛÉÏËùÊö£¬ËùÓÐÕýÈ·µÄ¸öÊýÊÇ4¸ö£®
¹ÊÑ¡D£®
µãÆÀ£º±¾Ì⿼²é¸´ºÏº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²é³ä·ÖÌõ¼þÓë±ØÒªÌõ¼þ£¬¿¼²éÓÉy=Asin£¨¦Øx+¦Õ£©µÄ²¿·ÖͼÏóÈ·¶¨Æä½âÎöʽ£¬Í»³ö¿¼²éÊýѧ¹éÄÉ·¨µÄÓ¦Óã¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿