ÌâÄ¿ÄÚÈÝ
¶¥µãÔÚԵ㣬½¹µãÔÚxÖáÉϵÄÅ×ÎïÏßC¹ýµãP£¨4£¬4£©£®¹ý¸ÃÅ×ÎïÏß½¹µãFµÄÖ±Ïß½»Å×ÎïÏßÓÚA¡¢BÁÁµã£¬µãMºÍN·Ö±ðΪA¡¢BÁ½µãÔÚÅ×ÎïÏß×¼ÏßlÉϵÄÉäÓ°£®×¼ÏßlÓëxÖáµÄ½»µãΪE£®£¨1£©ÇóÅ×ÎïÏßCµÄ±ê×¼·½³Ì£»
£¨2£©Ä³Ñ§Ï°Ð¡×éÔÚ¼ÆËã»ú¶¯Ì¬ÊýѧÈí¼þµÄ°ïÖúÏ£¬µÃµ½Á˹ØÓÚÅ×ÎïÏßCÐÔÖʵÄÈçϲÂÏ룺¡°Ö±ÏßANºÍBMºãÏཻÓÚÔµãO¡±£¬ÊÔÖ¤Ã÷¸Ã½áÂÛÊÇÕýÈ·µÄ£»
£¨3£©¸ÃС×麢ÏîÑо¿Å×ÎïÏßCÖСÏAEBµÄ´óС·¶Î§£¬ÊÔͨ¹ý¼ÆËãµÄ½á¹ûÀ´¸ø³öÒ»¸öÄãÈÏΪÕýÈ·µÄÓë¡ÏAEBÓйصÄÍÆÂÛ£¬²¢ËµÃ÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÓÉÌâÒâ¿É¿ÉÉèÅ×ÎïÏߵķ½³Ìy2=2px£¨p£¾0£©ÓÉÅ×ÎïÏßC¹ýµãP£¨4£¬4£©¿ÉÇóp£¬½ø¶ø¿ÉÇóÅ×ÎïÏß·½³Ì
£¨2£©¿ÉÖ¤µ± x1¡Ùx2ʱ£¬kOA=kON£¬ËµÃ÷A¡¢O¡¢NÈýµã¹²Ïߣ»µ± x1=x2ʱ£¬²»Äѵõ½ABNMΪ¾ØÐΣ¬ÇÒÓжԳÆÐÔ¿ÉÖªµãOΪ¶Ô½ÇÏßAN¡¢BMµÄ½»µã£¬ËùÒÔ´ËʱA¡¢O¡¢NÈýµã¹²Ïߣ®
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÒòΪAB¹ý½¹µãFÇÒF£¨1£¬0£©£¬µ± x1¡Ùx2ʱ£¬ABËùÔÚµÄÖ±Ïߵķ½³Ìy=k£¨x-1£©£¬k¡Ù0£¬´úÈëÅ×ÎïÏß·½³Ì£¬½áºÏ·½³ÌµÄ¸ùÓëϵÊý¹Øϵ¿ÉÇ󣬵± x1=x2ʱ£¬ABËùÔÚµÄÖ±Ïß´¹Ö±ÓÚxÖᣬ²»ÄÑÇóµÃAF=EF=EB=2£¬¹Ê´Ëʱ¡ÏAEB=90°
½â´ð£º½â£º£¨1£©ÓÉÌâÒâ¿É¿ÉÉèÅ×ÎïÏߵķ½³Ìy2=2px£¨p£¾0£©
¡ßÅ×ÎïÏßC¹ýµãP£¨4£¬4£©¡àp=2
¡ày2=4x
£¨2£©µ± x1¡Ùx2ʱ£¬kOA=kON£¬ËùÒÔ´ËʱA¡¢O¡¢NÈýµã¹²Ïߣ»µ± x1=x2ʱ£¬²»Äѵõ½ABNMΪ¾ØÐΣ¬ÇÒÓжԳÆÐÔ¿ÉÖªµãOΪ¶Ô½ÇÏßAN¡¢BMµÄ½»µã£¬ËùÒÔ´ËʱA¡¢O¡¢NÈýµã¹²Ïߣ®
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÒòΪAB¹ý½¹µãFÇÒF£¨1£¬0£©£¬
µ± x1¡Ùx2ʱ£¬ABËùÔÚµÄÖ±Ïߵķ½³Ìy=k£¨x-1£©£¬k¡Ù0£¬´úÈëÅ×ÎïÏß·½³Ì¿ÉµÃk2x2-£¨2k2+4£©x+k2=0£¬
ËùÒÔ
µ± x1=x2ʱ£¬ABËùÔÚµÄÖ±Ïß´¹Ö±ÓÚxÖᣬ²»ÄÑÇóµÃAF=EF=EB=2£¬¹Ê´Ëʱ¡ÏAEB=90°
×ÛÉÏ£¬¿ÉÌá³öÍÆÂÛ¡°¡ÏAEBÖ»ÄÜÊÇÈñ½Ç»òÖ±½Ç¡±
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÓÉÅ×ÎïÏßµÄÐÔÖÊÇó½âÅ×ÎïÏߵķ½³Ì£¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØϵµÄÓ¦Ó㬷½³ÌµÄ¸ùÓëϵÊý¹ØϵµÄÓ¦Óã¬ÊôÓÚ×ÛºÏÐÔÊÔÌ⣮
£¨2£©¿ÉÖ¤µ± x1¡Ùx2ʱ£¬kOA=kON£¬ËµÃ÷A¡¢O¡¢NÈýµã¹²Ïߣ»µ± x1=x2ʱ£¬²»Äѵõ½ABNMΪ¾ØÐΣ¬ÇÒÓжԳÆÐÔ¿ÉÖªµãOΪ¶Ô½ÇÏßAN¡¢BMµÄ½»µã£¬ËùÒÔ´ËʱA¡¢O¡¢NÈýµã¹²Ïߣ®
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÒòΪAB¹ý½¹µãFÇÒF£¨1£¬0£©£¬µ± x1¡Ùx2ʱ£¬ABËùÔÚµÄÖ±Ïߵķ½³Ìy=k£¨x-1£©£¬k¡Ù0£¬´úÈëÅ×ÎïÏß·½³Ì£¬½áºÏ·½³ÌµÄ¸ùÓëϵÊý¹Øϵ¿ÉÇ󣬵± x1=x2ʱ£¬ABËùÔÚµÄÖ±Ïß´¹Ö±ÓÚxÖᣬ²»ÄÑÇóµÃAF=EF=EB=2£¬¹Ê´Ëʱ¡ÏAEB=90°
½â´ð£º½â£º£¨1£©ÓÉÌâÒâ¿É¿ÉÉèÅ×ÎïÏߵķ½³Ìy2=2px£¨p£¾0£©
¡ßÅ×ÎïÏßC¹ýµãP£¨4£¬4£©¡àp=2
¡ày2=4x
£¨2£©µ± x1¡Ùx2ʱ£¬kOA=kON£¬ËùÒÔ´ËʱA¡¢O¡¢NÈýµã¹²Ïߣ»µ± x1=x2ʱ£¬²»Äѵõ½ABNMΪ¾ØÐΣ¬ÇÒÓжԳÆÐÔ¿ÉÖªµãOΪ¶Ô½ÇÏßAN¡¢BMµÄ½»µã£¬ËùÒÔ´ËʱA¡¢O¡¢NÈýµã¹²Ïߣ®
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÒòΪAB¹ý½¹µãFÇÒF£¨1£¬0£©£¬
µ± x1¡Ùx2ʱ£¬ABËùÔÚµÄÖ±Ïߵķ½³Ìy=k£¨x-1£©£¬k¡Ù0£¬´úÈëÅ×ÎïÏß·½³Ì¿ÉµÃk2x2-£¨2k2+4£©x+k2=0£¬
ËùÒÔ
µ± x1=x2ʱ£¬ABËùÔÚµÄÖ±Ïß´¹Ö±ÓÚxÖᣬ²»ÄÑÇóµÃAF=EF=EB=2£¬¹Ê´Ëʱ¡ÏAEB=90°
×ÛÉÏ£¬¿ÉÌá³öÍÆÂÛ¡°¡ÏAEBÖ»ÄÜÊÇÈñ½Ç»òÖ±½Ç¡±
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÓÉÅ×ÎïÏßµÄÐÔÖÊÇó½âÅ×ÎïÏߵķ½³Ì£¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØϵµÄÓ¦Ó㬷½³ÌµÄ¸ùÓëϵÊý¹ØϵµÄÓ¦Óã¬ÊôÓÚ×ÛºÏÐÔÊÔÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¶¥µãÔÚԵ㡢½¹µãÔÚxÖáÉϵÄÅ×ÎïÏß±»Ö±Ïßy=x+1½ØµÃµÄÏÒ³¤ÊÇ
£¬ÔòÅ×ÎïÏߵķ½³ÌÊÇ£¨¡¡¡¡£©
10 |
A¡¢y2=-x»òy2=5x |
B¡¢y2=-x |
C¡¢y2=x»òy2=-5x |
D¡¢y2=5x |