题目内容
设函数f(x)=x|x|+bx+c,给出下列四个命题:
①当c=0时,f(-x)=-f(x)恒成立
②当b=0,c>0时,方程f(x)=0只有一个实数根
③函数y=f(x)的图象关于点(0,c)对称
④方程f(x)=0至多有两个实数根.
其中正确例题的序号是
①当c=0时,f(-x)=-f(x)恒成立
②当b=0,c>0时,方程f(x)=0只有一个实数根
③函数y=f(x)的图象关于点(0,c)对称
④方程f(x)=0至多有两个实数根.
其中正确例题的序号是
①②③
①②③
.分析:①利用函数奇偶性的定义可判断.②当b=0时,得f(x)=x|x|+c在R上为单调增函数,方程f(x)=0只有一个实根.
③利用函数图象关于点对称的定义,可证得函数f(x)图象关于点(0,c)对称.
④举出反例如c=0,b=-2,可以判断.
③利用函数图象关于点对称的定义,可证得函数f(x)图象关于点(0,c)对称.
④举出反例如c=0,b=-2,可以判断.
解答:解:①当c=0时,函数f(x)=x|x|+bx为奇函数,f(-x)=-f(x)恒成立,故①正确.
②b=0,c>0时,得f(x)=x|x|+c在R上为单调增函数,且值域为R,故方程f(x)=0,只有一个实数根,故②正确.
③因为f(-x)=-x|x|-bx+c,所以f(-x)+f(x)=2c,可得函数f(x)的图象关于点(0,c)对称,故③正确.
④当c=0,b=-2,f(x)=x|x|-2x=0的根有x=0,x=2,x=-2故④错误.
故答案为:①②③.
②b=0,c>0时,得f(x)=x|x|+c在R上为单调增函数,且值域为R,故方程f(x)=0,只有一个实数根,故②正确.
③因为f(-x)=-x|x|-bx+c,所以f(-x)+f(x)=2c,可得函数f(x)的图象关于点(0,c)对称,故③正确.
④当c=0,b=-2,f(x)=x|x|-2x=0的根有x=0,x=2,x=-2故④错误.
故答案为:①②③.
点评:本题考查了函数奇偶性、对称性、单调性以及二次函数的图象和性质.对函数奇偶性和单调性的充分理解,并用于二次函数当中,是解决本题的关键.
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
| A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|