题目内容

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,点M在线段PC上,且PM=2MC,N为AD的中点.

(1)求证:平面PAD⊥平面PNB;
(2)若平面PAD⊥平面ABCD,求三棱锥P﹣NBM的体积.

【答案】
(1)证明:∵PA=PD,N为AD的中点,∴PN⊥AD,

∵底面ABCD为菱形,∠BAD=60°,∴PA=AB,AN=AN,∠PAN=∠BAN,

∴△PNA≌△BNA,则BN⊥AD,

∵PN∩BN=N,∴AD⊥平面PNB,

又AD平面PAD,∴平面PAD⊥平面PNB


(2)解:∵PA=PD=AD=2,∴PN=NB=

∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD,

∴PN⊥平面ABCD,∴PN⊥BN,

∴SPNB= × × =

∵AD⊥平面PNB,AD∥BC,∴BC⊥平面PNB,

∵PM=2MC,∴VPNBM=VMPNB= VCPNB= × × ×2=


【解析】(1)由题意证明△PNA≌△BNA,得到BN⊥AD,再由线面垂直的判定证得AD⊥平面PNB,最后由面面垂直的判定得答案;(2)由面面垂直的性质得到PN⊥平面ABCD,进一步得到PN⊥BN,再由等积法把三棱锥P﹣NBM的体积转化为棱锥C﹣PNB的体积求解.
【考点精析】掌握平面与平面垂直的判定是解答本题的根本,需要知道一个平面过另一个平面的垂线,则这两个平面垂直.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网