题目内容

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,短轴一个端点到右焦点的距离为2.
(1)求椭圆的方程.
(2)若P是该椭圆上的一个动点,F1、F2分别是椭圆的左、右焦点,求
PF1
PF2
的最大值和最小值.
(1)设所求的椭圆方程为
x2
a2
+
y2
b2
=1
(a>b>0),
由离心率e=
c
a
=
3
2

c=
3
3
a-c=2- 
3
a2=b2+c2
解得a=2,b=1,c=
3

故所求椭圆的方程为
x2
4
+y2=1

(2)由(1)知F1(-
3
,0),设P(x,y),
PF 1
PF 2
=(-
3
-x,-y)•(
3
-x,-y)=x2+y2-3=
1
4
(3x2-8)
∵x∈[-2,2],∴0≤x2≤4,
PF 1
PF 2
∈[-2,1]
故最大值1,最小值-2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网