题目内容

如图,在△OAB中,已知|O
A
| =2,|O
B
| =2
3
,∠AOB=90°,单位圆O与OA交于C,A
D
B
,λ∈(0,1)
,P为单位圆O上的动点.
(1)若O
C
+O
P
=O
D
,求λ的值;
(2)记|P
D
|
的最小值为f(λ),求f(λ)的表达式及f(λ)的最小值.
分析:(1)以O为原点,OA为x轴,OB为y轴建立直角坐标系,记∠POB=α,由O
C
+O
P
=O
D
cosα+1=2(1-λ)
sinα=2
3
λ
,从而可求
法1:(2)由
PD
=(2-2λ-cosα,2
3
λ-sinα)可得f(λ)=
16λ2-8λ+4
-1
,结合二次函数的性质可求
法2:(2)|
PD
|
|
OD
| -|
OP
| =
16λ2-8λ+4
-1|
PD
|
当且仅当P在线段OD上等号成立可得f(λ)=
16λ2-8λ+4
-1
下同法一
解答:解:(1)以O为原点,OA为x轴,OB为y轴建立直角坐标系
记∠POB=α则P(cosα,sinα),A(2,0),B(0,2
3
),C(1,0)
OD
=
OA
AB
=(2(1-λ),2
3
λ)
由OO
C
+O
P
=O
D

cosα+1=2(1-λ)
sinα=2
3
λ
16λ2-4λ=0⇒λ=0或λ=
1
4
(5分)
(2)法1:
PD
=(2-2λ-cosα,2
3
λ-sinα)
|
PD
|
2
≥16λ2-8λ+5-
64λ2-32λ+16

∴f(x)=
16λ2-8λ+5-
64λ2-32λ+16
=
16λ2-8λ+4
-1(4分)
∵16λ2-8λ+4=16(λ-
1
4
2+3≥3
∴f(x)min=f(
1
4
)=
3
-1(2分)
法2:|
PD
|
|
OD
| -|
OP
| =
16λ2-8λ+4
-1|
PD
|
当且仅当P在线段OD上等号成立
∴f(λ)=
16λ2-8λ+4
-1
(4分)
∵16λ2-8λ+4=16(λ-
1
4
2+3≥3
∴f(x)min=f(
1
4
)=
3
-1(2分)
点评:本题主要考查了向量与三角函数的综合应用,向量的坐标表示及二次函数的最值的求解,属于综合试题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网