题目内容

设数列{an}是公比为a(a≠1),首项为b的等比数列,Sn是前n项和,对任意的n∈N+,点(Sn,Sn+1)在(  )
A.直线y=ax-b上B.直线y=bx+a上
C.直线y=bx-a上D.直线y=ax+b上
Sn=
b(1-an)
1-a
Sn+1=
b(1-an+1)
1-a

aSn+b=
b(1-an)a
1-a
+
b(1-a)
1-a
=
b(1-an+1)
1-a
=Sn+1

故点(Sn,Sn+1)在直线y=ax+b上,
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网