题目内容
【题目】如图所示,在四棱锥中,底要为平行四边形, ,
, , 底面, 为上一点,且.
(1)证明: ;
(2)求二面角余弦值.
【答案】(1)详见解析(2)
【解析】试题分析:(1)由底面,得,再利用余弦定理计算AD,根据勾股定理得,利用线面垂直判定定理可得,最后根据线面垂直性质定理得;(2)利用空间向量数量积求二面角的余弦值,先根据条件建立恰当空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求法向量夹角,最后根据二面角与法向量夹角关系确定所求值.
试题解析:(1)证明:在中, .
不妨设,则由已知,得,
所以,所以,
所以,即,又底面,所以
所以.
(2)解:由(1)知, ,以为原点,如图所示建立空间直角坐标系,设,
于是, , , ,
因为为上一点,且,所以,所以,
所以,,设平面的法向量,
则,令,则
又,,设平面的法向量
,令,则,
设二面角的大小为,由图可知,则.
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.