题目内容
设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。
(1)若,求b3;
(2)若,求数列的前2m项和公式;
(3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。
,,
解析:
解(1)由题意:得
解,得[来源:学科网ZXXK]
成立的所有n中的最小整数为7,即…………4分
(2)由题意,得对于正整数,由,
得.
根据的定义可知
当时,;
当时,;……………………3分
[来源:学科网]
……………………2分
(3)假设存在p和q满足条件,由不等式及得.
,根据的定义可知,对于任意的正整数m都有
,[来源:学*科*网Z*X*X*K]
即对任意的正整数m都成立。
当时,得(或),
这与上述结论矛盾:
当,即时,得,
角得……………………4分
∴存在p和q,使得;
p和q的取值范围分别是……………………1分
练习册系列答案
相关题目