题目内容
中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=2
,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7.
(Ⅰ)求椭圆和双曲线的方程;
(Ⅱ)若P为双曲线与椭圆的交点,求cos∠F1PF2.
13 |
(Ⅰ)求椭圆和双曲线的方程;
(Ⅱ)若P为双曲线与椭圆的交点,求cos∠F1PF2.
(Ⅰ)由题意知,半焦距c=
,设椭圆长半轴为a,则双曲线实半轴 a-4,
离心率之比为
=
,
∴a=7,
∴椭圆的短半轴等于
=6,
双曲线虚半轴的长为
=2,
∴椭圆和双曲线的方程分别为:
+
=1和
-
=1.
(Ⅱ)由椭圆的定义得:PF1 +PF2=2a=14,
由双曲线的定义得:PF1-PF2=±6,
∴PF1与PF2中,一个是10,另一个是 4,不妨令PF1=10,PF2=4,
又F1F2=2
,三角形F1PF2中,利用余弦定理得:(2
)2=100+16-80cos∠F1PF2,
∴cos∠F1PF2=
.
13 |
离心率之比为
3 |
7 |
| ||||
|
∴a=7,
∴椭圆的短半轴等于
49-13 |
双曲线虚半轴的长为
13-9 |
∴椭圆和双曲线的方程分别为:
x2 |
49 |
y2 |
36 |
x2 |
9 |
y2 |
4 |
(Ⅱ)由椭圆的定义得:PF1 +PF2=2a=14,
由双曲线的定义得:PF1-PF2=±6,
∴PF1与PF2中,一个是10,另一个是 4,不妨令PF1=10,PF2=4,
又F1F2=2
13 |
13 |
∴cos∠F1PF2=
4 |
5 |
练习册系列答案
相关题目
如图,函数y=f(x)的图象是中心在原点、焦点在x轴上的椭圆的两段弧,则不等式f(x)<f(-x)+x的解集为( )
A、{x|-
| ||||||||
B、{x|-2≤x<-
| ||||||||
C、{x|-2≤x<-
| ||||||||
D、{x|-
|
如图,函数y=f(x)的图象是中心在原点,焦点在x轴上的椭圆的两段弧,则不等式f(x)<f(-x)+x的解集为( )
A、{
| ||||||||
B、{x|-2≤x<
| ||||||||
C、{x|-
| ||||||||
D、{x|-
|