ÌâÄ¿ÄÚÈÝ
ÉèµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîµÄºÍΪSn£¬¹«±ÈΪq£¨q¡Ù1£©£®
£¨1£©ÈôS4£¬S12£¬S8³ÉµÈ²îÊýÁУ¬ÇóÖ¤£ºa10£¬a18£¬a14³ÉµÈ²îÊýÁУ»
£¨2£©ÈôSm£¬Sk£¬St£¨m£¬k£¬tΪ»¥²»ÏàµÈµÄÕýÕûÊý£©³ÉµÈ²îÊýÁУ¬ÊÔÎÊÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏî³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Ð´³öÁ½×éÕâÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÈôqΪ´óÓÚ1µÄÕýÕûÊý£®ÊÔÎÊ{an}ÖÐÊÇ·ñ´æÔÚÒ»Ïîak£¬Ê¹µÃakÇ¡ºÃ¿ÉÒÔ±íʾΪ¸ÃÊýÁÐÖÐÁ¬ÐøÁ½ÏîµÄºÍ£¿Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÈôS4£¬S12£¬S8³ÉµÈ²îÊýÁУ¬ÇóÖ¤£ºa10£¬a18£¬a14³ÉµÈ²îÊýÁУ»
£¨2£©ÈôSm£¬Sk£¬St£¨m£¬k£¬tΪ»¥²»ÏàµÈµÄÕýÕûÊý£©³ÉµÈ²îÊýÁУ¬ÊÔÎÊÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏî³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Ð´³öÁ½×éÕâÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÈôqΪ´óÓÚ1µÄÕýÕûÊý£®ÊÔÎÊ{an}ÖÐÊÇ·ñ´æÔÚÒ»Ïîak£¬Ê¹µÃakÇ¡ºÃ¿ÉÒÔ±íʾΪ¸ÃÊýÁÐÖÐÁ¬ÐøÁ½ÏîµÄºÍ£¿Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝS4£¬S12£¬S8³ÉµÈ²îÊýÁУ¬q¡Ù1£¬¿ÉµÃS12=S4+S8£¬»¯¼ò¿ÉµÃ2q8=1+q4£¬½ø¶ø¿ÉÒÔÖ¤Ã÷a10£¬a18£¬a14³ÉµÈ²îÊýÁУ»
£¨2£©¸ù¾ÝSm£¬Sk£¬St£¨m£¬k£¬tΪ»¥²»ÏàµÈµÄÕýÕûÊý£©³ÉµÈ²îÊýÁУ¬¿ÉµÃ2Sk=Sm+St£¬»¯¼ò¿ÉµÃ2a1qk=a1qm+a1qt£¬´Ó¶ø¿ÉµÃam+1£¬ak+1£¬at+1³ÉµÈ²îÊýÁУ¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©¼ÙÉè´æÔÚÒ»Ïîak£¬Ê¹µÃakÇ¡ºÃ¿ÉÒÔ±íʾΪ¸ÃÊýÁÐÖÐÁ¬ÐøÁ½ÏîµÄºÍ£¬Éèak=an+an+1£¬¿ÉµÃk£¾n£¬qk-n=1+q
£¬´Ó¶ø¿ÉµÃ½áÂÛ£®
£¨2£©¸ù¾ÝSm£¬Sk£¬St£¨m£¬k£¬tΪ»¥²»ÏàµÈµÄÕýÕûÊý£©³ÉµÈ²îÊýÁУ¬¿ÉµÃ2Sk=Sm+St£¬»¯¼ò¿ÉµÃ2a1qk=a1qm+a1qt£¬´Ó¶ø¿ÉµÃam+1£¬ak+1£¬at+1³ÉµÈ²îÊýÁУ¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©¼ÙÉè´æÔÚÒ»Ïîak£¬Ê¹µÃakÇ¡ºÃ¿ÉÒÔ±íʾΪ¸ÃÊýÁÐÖÐÁ¬ÐøÁ½ÏîµÄºÍ£¬Éèak=an+an+1£¬¿ÉµÃk£¾n£¬qk-n=1+q
£¬´Ó¶ø¿ÉµÃ½áÂÛ£®
½â´ð£º½â£º£¨1£©ÈôS4£¬S12£¬S8³ÉµÈ²îÊýÁУ¬q¡Ù1£¬ÔòS12=S4+S8£¬
¡à
=
+
¡à2q8=1+q4
¡àa10+a14=a1q9+a1q13=a1q9(1+q4)=a1q9•2q8=2a18£¬
¡àa10£¬a18£¬a14³ÉµÈ²îÊýÁУ»
£¨2£©ÈôSm£¬Sk£¬St£¨m£¬k£¬tΪ»¥²»ÏàµÈµÄÕýÕûÊý£©³ÉµÈ²îÊýÁУ¬Ôò2Sk=Sm+St£¬
¡à
=
+
¡à2qk=qm+qt
¡à2a1qk=a1qm+a1qt
¡àam+1£¬ak+1£¬at+1³ÉµÈ²îÊýÁУ¬
¡àam+2£¬ak+2£¬at+2³ÉµÈ²îÊýÁУ»
£¨3£©¼ÙÉè´æÔÚÒ»Ïîak£¬Ê¹µÃakÇ¡ºÃ¿ÉÒÔ±íʾΪ¸ÃÊýÁÐÖÐÁ¬ÐøÁ½ÏîµÄºÍ£¬Éèak=an+an+1£¬
Ôòa1qk-1=a1qn-1+a1qn
¡ßa1¡Ù0£¬q£¾1
¡àqk-1=qn-1+qn
¡àqk=qn+qn+1
¡ßqn+1£¾1
¡àqk£¾qn
¡àk£¾n£¬qk-n=1+q
µ±qΪżÊýʱ£¬qk-nΪżÊý£¬¶ø1+qΪÆæÊý£¬¼ÙÉè²»³ÉÁ¢£»
µ±qΪÆæÊýʱ£¬qk-nΪÆæÊý£¬¶ø1+qΪżÊý£¬¼ÙÉèÒ²²»³ÉÁ¢£¬
×ÛÉÏ£¬{an}Öв»´æÔÚak£¬Ê¹µÃakÇ¡ºÃ¿ÉÒÔ±íʾΪ¸ÃÊýÁÐÖÐÁ¬ÐøÁ½ÏîµÄºÍ£®
¡à
2a1(1-q12) |
1-q |
a1(1-q4) |
1-q |
a1(1-q8) |
1-q |
¡à2q8=1+q4
¡àa10+a14=a1q9+a1q13=a1q9(1+q4)=a1q9•2q8=2a18£¬
¡àa10£¬a18£¬a14³ÉµÈ²îÊýÁУ»
£¨2£©ÈôSm£¬Sk£¬St£¨m£¬k£¬tΪ»¥²»ÏàµÈµÄÕýÕûÊý£©³ÉµÈ²îÊýÁУ¬Ôò2Sk=Sm+St£¬
¡à
2a1(1-qk) |
1-q |
a1(1-qm) |
1-q |
a1(1-qt) |
1-q |
¡à2qk=qm+qt
¡à2a1qk=a1qm+a1qt
¡àam+1£¬ak+1£¬at+1³ÉµÈ²îÊýÁУ¬
¡àam+2£¬ak+2£¬at+2³ÉµÈ²îÊýÁУ»
£¨3£©¼ÙÉè´æÔÚÒ»Ïîak£¬Ê¹µÃakÇ¡ºÃ¿ÉÒÔ±íʾΪ¸ÃÊýÁÐÖÐÁ¬ÐøÁ½ÏîµÄºÍ£¬Éèak=an+an+1£¬
Ôòa1qk-1=a1qn-1+a1qn
¡ßa1¡Ù0£¬q£¾1
¡àqk-1=qn-1+qn
¡àqk=qn+qn+1
¡ßqn+1£¾1
¡àqk£¾qn
¡àk£¾n£¬qk-n=1+q
µ±qΪżÊýʱ£¬qk-nΪżÊý£¬¶ø1+qΪÆæÊý£¬¼ÙÉè²»³ÉÁ¢£»
µ±qΪÆæÊýʱ£¬qk-nΪÆæÊý£¬¶ø1+qΪżÊý£¬¼ÙÉèÒ²²»³ÉÁ¢£¬
×ÛÉÏ£¬{an}Öв»´æÔÚak£¬Ê¹µÃakÇ¡ºÃ¿ÉÒÔ±íʾΪ¸ÃÊýÁÐÖÐÁ¬ÐøÁ½ÏîµÄºÍ£®
µãÆÀ£º±¾Ì⿼²éµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ۺϣ¬¿¼²éµÈ²îÊýÁеÄÖ¤Ã÷£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÉèµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Èô8a2+a5=0£¬ÔòÏÂÁÐʽ×ÓÖÐÊýÖµ²»ÄÜÈ·¶¨µÄÊÇ£¨¡¡¡¡£©
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|
ÉèµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Èô
=3£¬Ôò
=£¨¡¡¡¡£©
S6 |
S3 |
S9 |
S6 |
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢1 |