题目内容
(2013•绵阳二模)已知△ABC的面积S满足3≤S≤3
,且
•
=6,
与
的夹角为θ.
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最大值.
3 |
AB |
BC |
AB |
BC |
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最大值.
分析:(Ⅰ)利用向量的数量积、三角形的面积公式和正切函数的单调性即可求出;
(Ⅱ)利用三角恒等变形及三角函数的单调性即可求出.
(Ⅱ)利用三角恒等变形及三角函数的单调性即可求出.
解答:解:(I)由题意知
•
=|
||
|cosθ=6.
S=
|
| |
|sin(π-θ)=
|
| |
|sinθ
=
|
| |
|cosθtanθ
=
×6tanθ=3tanθ.
∵3≤S≤3
,
∴3≤3tanθ≤3
,∴1≤tanθ≤
.
又∵θ∈[0,π],∴
≤θ≤
.
(II)∵f(θ)=sin2θ+2sinθcosθ+3cos2θ
=1+sin2θ+2cos2θ
=2+sin2θ+cos2θ=2+
sin(2θ+
).
,∴(2θ+
)∈[
,
].
∵y=sinx在[
,π]上单调递减,
∴当2θ+
=
,即θ=
时,sin(2θ+
)取得最大值
,
∴f(θ)的最大值为2+
×
=3.
AB |
BC |
AB |
BC |
S=
1 |
2 |
AB |
BC |
1 |
2 |
AB |
BC |
=
1 |
2 |
AB |
BC |
=
1 |
2 |
∵3≤S≤3
3 |
∴3≤3tanθ≤3
3 |
3 |
又∵θ∈[0,π],∴
π |
4 |
π |
3 |
(II)∵f(θ)=sin2θ+2sinθcosθ+3cos2θ
=1+sin2θ+2cos2θ
=2+sin2θ+cos2θ=2+
2 |
π |
4 |
|
π |
4 |
3π |
4 |
11π |
12 |
∵y=sinx在[
π |
2 |
∴当2θ+
π |
4 |
3π |
4 |
π |
4 |
π |
4 |
| ||
2 |
∴f(θ)的最大值为2+
2 |
| ||
2 |
点评:熟练掌握向量的数量积运算和三角函数的单调性是解题的关键.
练习册系列答案
相关题目