题目内容

9.已知函数f(x)=|x|,
(1)解不等式f(x-2)≤2-f(x);
(2)证明:对任意实数x≠0,有$f({\frac{1}{x}-1})+f({x+1})≥2$.

分析 (1)不等式等价于|x|+|x-2|≤2,再利用绝对值的意义求得x的范围.
(2)由条件利用基本不等式证得结论成立.

解答 解:(1)函数f(x)=|x|,∴f(x-2)=|x-2|,不等式f(x-2)≤2-f(x),
等价于|x-2|≤2-|x|,即|x|+|x-2|≤2.
|x|+|x-2|表示数轴上的x对应点到0、2的距离之和,它的最小值为2,此时,0≤x≤2,
故不等式f(x-2)≤2-f(x)的解集为[0,2].
(2)证明:$f({\frac{1}{x}-1})+f({x+1})=|{\frac{1}{x}-1}|+|{x+1}|≥|{\frac{1}{x}+x}|=\frac{1}{|x|}+|x|≥2\sqrt{|x|•|{\frac{1}{x}}|}=2$,即$f({\frac{1}{x}-1})+f({x+1})≥2$成立,
当且仅当x=±1时等号成立.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,基本不等式的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网