题目内容

在直角坐标系xOy中,点M(2,-
1
2
)
,点F为抛物线C:y=mx2(m>0)的焦点,线段MF恰被抛物线C平分.
(Ⅰ)求m的值;
(Ⅱ)过点M作直线l交抛物线C于A,B两点,设直线FA、FM、FB的斜率分别为k1、k2、k3,问k1,k2,k3能否成公差不为零的等差数列?若能,求直线l的方程;若不能,请说明理由.
(Ⅰ)焦点F的坐标为(0,
1
4m
)
,线段MF的中点N(1,
1
8m
-
1
4
)
在抛物线C上,
1
8m
-
1
4
=m
,∴8m2+2m-1=0,∴m=
1
4
m=-
1
2
舍).  …(5分)
(Ⅱ)由(Ⅰ)知:抛物线C:x2=4y,F(0,1).
设l方程为:y+
1
2
=k(x-2)
,A(x1,y1)、B(x2,y2),
则由
y+
1
2
=k(x-2)
x2=4y
得:x2-4kx+8k+2=0,△=16k2-4(8k+2)>0,
解得k<
2-
6
2
k>
2+
6
2
. 
由韦达定理可得,
x1+x2=4k
x1x2=8k+2
,…(8分)
假设k1,k2,k3能成公差不为零的等差数列,则k1+k3=2k2
k1+k3=
y1-1
x1
+
y2-1
x2
=
x2y1+x1y2-x2-x1
x1x2
=
x2x12
4
+
x1x22
4
-x2-x1
x1x2

=
(
x1x2
4
-1)(x1+x2)
x1x2
=
(
8k+2
4
-1)•4k
8k+2
=
4k2-k
4k+1
,…(11分)
k2=-
3
4
,∴
4k2-k
4k+1
=-
3
2
,8k2+10k+3=0,解得:k=-
1
2
2-
6
2
(符合题意),k=-
3
4
(此时直线l经过焦点F,k1=k2=k3,不合题意,舍去),…(14分)
直线l的方程为y+
1
2
=-
1
2
(x-2)
,即x+2y-1=0.
故k1,k2,k3能成公差不为零的等差数列,直线l的方程为:x+2y-1=0. …(15分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网