题目内容
试比较nn+1与(n+1)n(n∈N*)的大小.
当n=1时,有nn+1______(n+1)n(填>、=或<);
当n=2时,有nn+1______(n+1)n(填>、=或<);
当n=3时,有nn+1______(n+1)n(填>、=或<);
当n=4时,有nn+1______(n+1)n(填>、=或<);
猜想一个一般性的结论,并加以证明.
当n=1时,有nn+1______(n+1)n(填>、=或<);
当n=2时,有nn+1______(n+1)n(填>、=或<);
当n=3时,有nn+1______(n+1)n(填>、=或<);
当n=4时,有nn+1______(n+1)n(填>、=或<);
猜想一个一般性的结论,并加以证明.
当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,
当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,
当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,
当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,
根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.
①当n=3时,nn+1=34=81>(n+1)n=43=64
即nn+1>(n+1)n成立.
②假设当n=k时,kk+1>(k+1)k成立,即:
>1
则当n=k+1时,
=(k+1)•(
)k+1>(k+1)•(
)k+1=
>1
即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,
∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.
当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,
当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,
当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,
根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.
①当n=3时,nn+1=34=81>(n+1)n=43=64
即nn+1>(n+1)n成立.
②假设当n=k时,kk+1>(k+1)k成立,即:
kk+1 |
(k+1)k |
则当n=k+1时,
(k+1)k+2 |
(k+2)k+1 |
k+1 |
k+2 |
k |
k+1 |
kk+1 |
(k+1)k |
即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,
∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.
练习册系列答案
相关题目