题目内容
已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点.
(1)证明: 点C、D和原点O在同一直线上.
(2)当BC平行于x轴时,求点A的坐标.
(1)证明略 (2) A(,log8
)
设A、B的横坐标分别为x1、x2,由题设知x1>1,x2>1,点A(x1,log8x1),B(x2,log8x2).
因为A、B在过点O的直线上,所以,又点C、D的坐标分别为(x1,log2x1)、(x2,log2x2).
由于log2x1=3log8x1,log2x2=3log8x2,则
由此得kOC=kOD,即O、C、D在同一直线上
(2)解:由BC平行于x轴,有log2x1=log8x2,又log2x1=3log8x1
∴x2=x13
将其代入,得x13log8x1=3x1log8x1,
由于x1>1知log8x1≠0,故x13=3x1x2=,于是A(
,log8
).