题目内容

(2012•惠州模拟)已知椭圆C:  
x2
a2
+
y2
b2
=1  (a>b>0)
的离心率为
6
3
,且经过点(
3
2
1
2
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)的直线交椭圆C于A,B两点,求△AOB(O为原点)面积的最大值.
分析:(Ⅰ)由 e2=
a2-b2
a2
=1-
b2
a2
=
2
3
,得 
b
a
=
1
3
.再由椭圆C经过点(
3
2
1
2
)
,能求出椭圆C的方程.
(Ⅱ)设直线方程为y=kx+2.将直线AB的方程与椭圆C的方程联立,消去y得(1+3k2)x2+12kx+9=0.再由根的判别式和韦达定理能够求出三角形面积的最大值.
解答:(本小题满分14分)
(Ⅰ)解:由 e2=
a2-b2
a2
=1-
b2
a2
=
2
3

得 
b
a
=
1
3
.   ①…(2分)
由椭圆C经过点(
3
2
1
2
)
,得
9
4a2
+
1
4b2
=1
.    ②…(3分)
联立①②,解得 b=1,a=
3
.  …(4分)   
所以椭圆C的方程是 
x2
3
+y2=1
.  …(5分)
(Ⅱ)解:易知直线AB的斜率存在,设其方程为y=kx+2.
将直线AB的方程与椭圆C的方程联立,
消去y得 (1+3k2)x2+12kx+9=0.…(7分)
令△=144k2-36(1+3k2)>0,得k2>1.
设A(x1,y1),B(x2,y2),
x1+x2=-
12k
1+3k2
x1x2=
9
1+3k2
. …(9分)
所以 S△AOB=|S△POB-S△POA|=
1
2
×2×|x1-x2|=|x1-x2|
.     …(10分)
因为 (x1-x2)2=(x1+x2)2-4x1x2=(-
12k
1+3k2
)2-
36
1+3k2
=
36(k2-1)
(1+3k2)2

设 k2-1=t(t>0),
则 (x1-x2)2=
36t
(3t+4)2
=
36
9t+
16
t
+24
36
2
9t×
16
t
+24
=
3
4
.   …(13分)
当且仅当9t=
16
t
,即t=
4
3
时等号成立,
此时△AOB面积取得最大值
3
2
.…(14分)
点评:本题考查椭圆方程的求法,考查三角形最大面积的计算.考查运算推理能力和计算求解能力,是高考的重点.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网