题目内容
【题目】已知数列的前n项和为,且n、、成等差数列,.
(1)证明数列是等比数列,并求数列的通项公式;
(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.
【答案】(1)证明见解析,;(2)11202.
【解析】
(1)由n,,成等差数列,可得,,两式相减,由等比数列的定义可得是等比数列,可求数列的通项公式;
(2)由(1)中的可求出,根据和求出数列,中的公共项,分组求和,结合等比数列和等差数列的求和公式,可得答案.
(1)证明:因为n,,成等差数列,所以,①
所以.②
①-②,得,所以.
又当时,,所以,所以,
故数列是首项为2,公比为2的等比数列,
所以,即.
(2)根据(1)求解知,,,所以,
所以数列是以1为首项,2为公差的等差数列.
又因为,,,,,,,,
,,,
所以
.
练习册系列答案
相关题目