题目内容
【题目】设分别为椭圆的左、右焦点,点为椭圆的左顶点,点为椭圆的上顶点,且.
(1)若椭圆的离心率为,求椭圆的方程;
(2)设为椭圆上一点,且在第一象限内,直线与轴相交于点,若以为直径的圆经过点,证明:点在直线上.
【答案】(1);(2)见解析
【解析】
试题分析:(1)由题意离心率以及可以建立关于,,的方程组,求得,,的值即可求解;(2)设,根据题意将,用含的代数式表示,消去参数后即可得到,所满足的关系式,从而得证.
试题解析:(1)设,由题意,得,且,得,,,
∴椭圆的方程为;(2)由题意,得,∴椭圆的方程,则,,,设,由题意知,则直线的斜率,直线的方程为,当时,,即点,直线的斜率为,∵以为直径的圆经过点,∴,∴,化简得,又∵为椭圆上一点,且在第一象限内,∴,,,由①②,解得,,∴,即点在直线上.
练习册系列答案
相关题目
【题目】某小型工厂安排甲、乙两种产品的生产,已知工厂生产甲、乙两种产品每吨所需要的原材料A,B,C的数量和一周内可用资源数量如下表所示:
原材料 | 甲(吨) | 乙(吨) | 资源数量(吨) |
A | 1 | 1 | 50 |
B | 4 | 0 | 160 |
C | 2 | 5 | 200 |
如果甲产品每吨的利润为300元,乙产品每吨的利润为200元,那么适当安排生产后,工厂每周可获得的最大利润为______元.