题目内容
(2012•天门模拟)设点A(1,0),B(2,1),如果直线ax+by=1与线段AB有一个公共点,那么a2+b2( )
分析:由题意得:点A(1,0),B(2,1)在直线ax+by=1的两侧,那么把这两个点代入ax+by-1,它们的符号相反,乘积小于等于0,即可得出关于a,b的不等关系,画出此不等关系表示的平面区域,结合线性规划思想求出a2+b2的取值范围.
解答:解:∵直线ax+by=1与线段AB有一个公共点,
∴点A(1,0),B(2,1)在直线ax+by=1的两侧,
∴(a-1)(2a+b-1)≤0,
即
或
;
画出它们表示的平面区域,如图所示.
a2+b2表示原点到区域内的点的距离的平方,
由图可知,当原点O到直线2x+y-1=0的距离为原点到区域内的点的距离的最小值,
∵d=
,
那么a2+b2的最小值为:d2=
.
故选A.
∴点A(1,0),B(2,1)在直线ax+by=1的两侧,
∴(a-1)(2a+b-1)≤0,
即
|
|
画出它们表示的平面区域,如图所示.
a2+b2表示原点到区域内的点的距离的平方,
由图可知,当原点O到直线2x+y-1=0的距离为原点到区域内的点的距离的最小值,
∵d=
|-1| | ||
|
那么a2+b2的最小值为:d2=
1 |
5 |
故选A.
点评:本题考查二元一次不等式组与平面区域问题、函数的最值及其几何意义,是基础题.准确把握点与直线的位置关系,找到图中的“界”,是解决此类问题的关键.
练习册系列答案
相关题目