题目内容

【题目】已知数列{an}满足an22cos2nN*,等差数列{bn}满足a12b1a2b2.

(1)bn

(2)cna2n1b2n1a2nb2n,求cn

(3)求数列{anbn}2n项和S2n.

【答案】(1)bn3n2.(2)cn36n18.(3)S2n18n2.

【解析】试题分析:(1n为奇数,an2n为偶数,an4,所以b1·a11b2a24,所以bn1(n1)·33n2;(2cn2[3(2n1)2]4[3(2n)2]36n18;(3S2na1b1a2b2a2n1b2n1a2nb2nc1c2cn18n2.

试题解析:

(1)由题意知an3cos nπ,当n为奇数,an2

n为偶数,an4.

于是b1·a11b2a24,故数列{bn}的公差为3

bn1(n1)·33n2.

(2)cn2[3(2n1)2]4[3(2n)2]36n18.

(3)(2)知,数列{cn}为等差数列,

S2na1b1a2b2a2n1b2n1a2nb2n

c1c2cn18n2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网