题目内容
已知函数为偶函数,若曲线的一条切线的斜率为,在切点的横坐标等于( )
A. B. C. D.
已知等比数列单调递增,记数列的前项之和为,且满足条件
(1)求数列的通项公式;
(2)设,求数列的前项之和.
已知动圆与圆:,圆都相内切,即圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点作的平行线交曲线于,两个不同的点.
(1)求曲线的方程;
(2)试探究和的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由.
已知椭圆:()的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆的方程;
(2)设直线与椭圆交于、两点,坐标原点到直线的距离为,求△面积的最大值.
点关于直线的对称点为,则点的坐标为 .
函数的最小正周期等于( )
已知.若时,的最大值为2,则的最小值为 .
函数
(1)当时,求函数的定义域;
(2)是否存在实数,使函数在递减,并且最大值为1,若存在,求出的值;若不存在,请说明理由.
下列命题正确的是( )
A.若两条直线和同一个平面所成的角相等,则这两条直线平行
B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D.若两个平面都垂直于第三个平面,则这两个平面平行