题目内容

【题目】已知函数f(x)=|x+2|+|x﹣1|.
(1)求不等式f(x)>5的解集;
(2)若对于任意的实数x恒有f(x)≥|a﹣1|成立,求实数a的取值范围.

【答案】
(1)解:不等式f(x)>5即为|x+2|+|x﹣1|>5,

等价于

解得x<﹣3或x>2,

因此,原不等式的解集为{x|x<﹣3或x>2}


(2)解:f(x)=|x+2|+|x﹣1|≥|(x+2)﹣(x﹣1)|=3,

要使f(x)≥|a﹣1|对任意实数x∈R成立,

须使|a﹣1|≤3,

解得:﹣2≤a≤4


【解析】(1)问题转化为解不等式组问题,求出不等式的解集即可;(2)要使f(x)≥|a﹣1|对任意实数x∈R成立,得到|a﹣1|≤3,解出即可.
【考点精析】利用绝对值不等式的解法对题目进行判断即可得到答案,需要熟知含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网