题目内容
【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)证明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
【答案】解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;
(Ⅰ)依题意有Q(1,1,0),C(0,0,1),P(0,2,0);
则 =(1,1,0), =(0,0,1), =(1,﹣1,0),
所以 =0, =0;
即PQ⊥DQ,PQ⊥DC,
故PQ⊥平面DCQ,
又PQ平面PQC,所以平面PQC⊥平面DCQ;
(Ⅱ)依题意,有B(1,0,1),
=(1,0,0), =(﹣1,2,﹣1);
设 =(x,y,z)是平面的PBC法向量,
则 即 ,
因此可取 =(0,﹣1,﹣2);
设 是平面PBQ的法向量,则 ,
可取 =(1,1,1),
所以cos< , >=﹣ ,
故二面角角Q﹣BP﹣C的余弦值为﹣ .
【解析】首先根据题意以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;(Ⅰ)根据坐标系,求出 、 、 的坐标,由向量积的运算易得 =0, =0;进而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得证明;(Ⅱ)依题意结合坐标系,可得B、 、 的坐标,进而求出平面的PBC的法向量 与平面PBQ法向量 ,进而求出cos< , >,根据二面角与其法向量夹角的关系,可得答案.
【考点精析】根据题目的已知条件,利用平面与平面垂直的判定和向量语言表述面面的垂直、平行关系的相关知识可以得到问题的答案,需要掌握一个平面过另一个平面的垂线,则这两个平面垂直;若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证;要证,只需证,即证.
【题目】学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:
不关注 | 关注 | 总计 | |
男生 | 30 | 15 | 45 |
女生 | 45 | 10 | 55 |
总计 | 75 | 25 | 100 |
根据表中数据,通过计算统计量K2= ,并参考一下临界数据:
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
若由此认为“学生对2018年俄罗斯年世界杯的关注与性别有关”,则此结论出错的概率不超过( )
A.0.10
B.0.05
C.0.025
D.0.01