题目内容
【题目】已知函数f(x)=|x﹣1|+|2x+2|,g(x)=|x+2|﹣|x﹣2a|+a.
(1)求不等式f(x)>4的解集;
(2)对x1∈R,x2∈R,使得f(x1)≥g(x2)成立,求a的取值范围.
【答案】(1)(2)[﹣4,0]
【解析】
(1)根据绝对值的几何意义,去掉绝对值,再分类解不等式f(x)>4.
(2)根据对x1∈R,x2∈R,使得f(x1)≥g(x2)成立,则f(x)min≥g(x)min,由(1)知, f(x)min=2,g(x)=|x+2|+|x﹣2a|+a≥|(x+2)﹣(x﹣2a)|+a=|2a+2|+a,解不等式2≥|2a+2|+a即可.
(1)因为,
所以f(x)>4即为或或,
解得或x>1,
所以不等式的解集为;
(2)由(1)知,当x=﹣1时,f(x)min=2,g(x)=|x+2|+|x﹣2a|+a≥|(x+2)﹣(x﹣2a)|+a=|2a+2|+a,
由题意,对x1∈R,x2∈R,使得f(x1)≥g(x2)成立,
故f(x)min≥g(x)min,
即2≥|2a+2|+a,
所以
解得﹣4≤a≤0,
所以实数a的取值范围为[﹣4,0].
练习册系列答案
相关题目