题目内容

精英家教网如图,点A,B分别是椭圆
x2
36
+
y2
20
=1
的长轴的左右端点,点F为椭圆的右焦点,直线PF的方程为:
3
x+y-4
3
=0
且PA⊥PF.
(1)求直线AP的方程;
(2)设点M是椭圆长轴AB上一点,点M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.
分析:(1)根据两直线垂直,求得AP的斜率,利用椭圆方程求得A的坐标,然后利用点斜式求得直线AP的方程.
(2)设出点M的坐标,利用两点间的距离公式利用题设建立等式求得m,进而可利用两点间的距离公式,表示出椭圆上的点到点M的距离d,利用x的范围和二次函数的单调性求得函数的最小值.
解答:解:(1)由题意得kAP=
3
3
,A的坐标为(-6,0)
则直线AP的方程为:x-
3
y+6=0

(2)设M(m,0),则
|m+6|
2
=6-m
,解得m=2或m=18(舍去),故M(2,0).
d2=(x-2)2+y2=
4
9
x2-4x+24
,x∈[-6,6],
所以当x=
9
2
时,dmin2=15,即dmin=
15
点评:本题主要考查了椭圆的简单性质,两点间的距离公式的运用以及二次函数的性质.考查了学生数形结合思想,函数思想的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网