题目内容

已知函数f(x)=2x+a.
(1)对于任意的实数x1,x2,试比较
f(x1-1)+f(x2-1)
2
f(
x1+x2
2
-1)
的大小;
(2)已知P=[1,4],关于x的不等式f(ax2-4x)>4+a的解集为M,且P∩M≠?,求实数a的取值范围.
分析:(1)采用作差法来比较即可.
(2)先把f(ax2-4x)>4+a转化为a>
2
x2
+
4
x
.再求g(x)=
2
x2
+
4
x
(x∈P)的最大值即可.
解答:解:(1)∵
f(x1-1)+f(x2-1)
2
-f(
x1+x2
2
-1)

=
(2x1-1+a)+(2x2-1+a)
2
-(2
x1+x2
2
-1
+a)

=
2x1-1+2x2-1
2
-2
x1+x2
2
-1 

2x1-1+2x2-1
2
2x1-1×2x2-1
=2
x1+x2
2
-1

∴①>0
f(x1-1)+f(x2-1)
2
>f(
x1+x2
2
-1
).
(2)f(ax2-4x)>4+a?2ax2-4x+a>4+a?ax2-4x>2?a>
2
x2
+
4
x

令g(x)=
2
x2
+
4
x
(x∈P),要使P∩Q≠Φ,只需a大于g(x)的最小值,
g(x)=2(
1
x
+1)
2
-2
,又x∈P,P=[1,4],
1
4
≤x≤1,则g(x)最小值=g(4)=
9
8
,∴a>
9
8
点评:本题是对指数函数的综合考查.第一问涉及到大小比较,通常比较大小的方法是作差或作商(要求知道正负).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网