题目内容
已知A=,B=,C=,求AB和AC.
AB= AC=
解析
已知在矩阵M对应的变换作用下,点A(1,0)变为A′(1,0),点B(1,1)变为B′(2,1).(1)求矩阵M;(2)求,,并猜测(只写结果,不必证明).
在平面直角坐标系xOy中,直线l:x+y+2=0在矩阵M=对应的变换作用下得到直线m:x-y-4=0,求实数a、b的值.
在平面直角坐标系中,一种线性变换对应的2×2矩阵为.(1)求点A(,3)在该变换作用下的象.(2)求圆x2+y2=1在该变换作用下的新曲线的方程.
已知矩阵A=,B=,求矩阵A-1B.
二阶矩阵M有特征值,其对应的一个特征向量e=,并且矩阵M对应的变换将点变换成点.(1)求矩阵M;(2)求矩阵M的另一个特征值及对应的一个特征向量.
将正整数()任意排成行列的数表.对于某一个数表,计算各行和各列中的任意两个数()的比值,称这些比值中的最小值为这个数表的“特征值”.若表示某个行列数表中第行第列的数(,),且满足,当时数表的“特征值”为_________
已知2×2矩阵A有特征值λ1=3及其对应的一个特征向量α1=,特征值λ2=-1及其对应的一个特征向量α2=,求矩阵A的逆矩阵A-1.
若点A(1,1)在矩阵M=对应变换的作用下得到的点为B(-1,1),求矩阵M的逆矩阵.