题目内容

15.若数列{an}满足:对任意的n∈N*,只有有限个正整数m使得am<n成立,记这样的m的个数为(an*,则得到一个新数列{(an*}.例如,若数列{an}是1,2,3…,n,…,则数列{(an*}是0,1,2,…n-1,…已知对任意的n∈N*,an=n2,则((an**=(  )
A.2nB.2n2C.nD.n2

分析 对任意的n∈N*,an=n2,可得$({a}_{1})^{*}$=0,$({a}_{2})^{*}$=1=$({a}_{3})^{*}$=$({a}_{4})^{*}$,$({a}_{5})^{*}=2$=…=$({a}_{9})^{*}$,…,可得$(({a}_{1})^{*})^{*}$=1,$(({a}_{2})^{*})^{*}$=4,$(({a}_{3})^{*})^{*}$=9,…,即可猜想出.

解答 解:对任意的n∈N*,an=n2
则$({a}_{1})^{*}$=0,$({a}_{2})^{*}$=1=$({a}_{3})^{*}$=$({a}_{4})^{*}$,
$({a}_{5})^{*}=2$=…=$({a}_{9})^{*}$,
$({a}_{10})^{*}$=3=…=$({a}_{16})^{*}$,…,
∴$(({a}_{1})^{*})^{*}$=1,$(({a}_{2})^{*})^{*}$=4,$(({a}_{3})^{*})^{*}$=9,…,
猜想((an**=n2
故选:D.

点评 本题考查了递推关系的应用、数列的通项公式,考查了猜想能力、计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网