题目内容
【题目】直线与圆相交于两点,当的面积达到最大时,________.
【答案】
【解析】
由圆的方程找出圆心坐标和半径,同时把直线的方程整理为一般式方程,然后利用点到直线的距离公式表示出圆心到直线的距离,即为圆中弦的弦心距,根据垂径定理得到垂足为弦的中点,由圆的半径,弦心距及弦的一半构成的直角三角形,利用勾股定理表示出弦的长度,然后利用三角形的面积公式底乘以高除,用含有的式子表示出三角形的面积,并利用基本不等式求出面积的最大值,以及面积取得最大值时的值,从而列出关于的方程,求出方程的解即可得到面积最大时的值.
解:由圆,
得到圆心坐标为 ,半径,
把直线的方程为,
整理为一般式方程得:,
.圆心到直线的距离
弦的长度,
,
又因为,
当且仅当时取等号,取得最大值,最大值为.
解得
故答案为:
【题目】甲、乙两个商场同时出售一款西门子冰箱,其中甲商场位于老城区中心,乙商场位于高新区.为了调查购买者的年龄与购买冰箱的商场选择是否具有相关性,研究人员随机抽取了1000名购买此款冰箱的用户作调研,所得结果如表所示:
50岁以上 | 50岁以下 | |
选择甲商场 | 400 | 250 |
选择乙商场 | 100 | 250 |
(1)判断是否有的把握认为购买者的年龄与购买冰箱的商场选择具有相关性;
(2)由于乙商场的销售情况未达到预期标准,商场决定给冰箱的购买者开展返利活动具体方案如下:当天卖出的前60台(含60台)冰箱,每台商家返利200元,卖出60台以上,超出60台的部分,每台返利50元.现将返利活动开展后15天内商场冰箱的销售情况统计如图所示:与此同时,老张得知甲商场也在开展返利活动,其日返利额的平均值为11000元,若老张将选择返利较高的商场购买冰箱,请问老张应当去哪个商场购买冰箱
附:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |