题目内容

【题目】已知常数,在矩形ABCD中, OAB的中点,点EFG分别在BCCDDA上移动,且PGEOF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由

【答案】见解析

【解析】试题分析:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在的两定点,使得点P到两点距离的和为定值.

试题解析:.按题意有

由此有

直线的方程为:

直线 的方程为:

从①,②消去参数k,得点的坐标满足方程

整理得 时,点P的轨迹为圆弧,所以不存在符合题意的两点.

时,点P轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长

时,点P到椭圆两个焦点(的距离之和为定值

时,点P 到椭圆两个焦点(0, 的距离之和为定值2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网