题目内容
在数列{an}中,若存在一个确定的正整数T,对任意n∈N*满足an+T=an,则称{an}是周期数列,T叫做它的周期.已知数列{xn}满足x1=1,x2=a(a≤1),xn+2=|xn+1-xn|,当数列{xn}的周期为3时,则{xn}的前2013项的和S2013=______.
∵xn+2=|xn+1-xn|,且x1=1,x2=a,(a≤1,a≠0)
∴x3=|x2-x1|=1-a
∴该数列的前3项的和S3=1+a+(1-a)=2
∵数列{xn}周期为3,
∴该数列的前2013项的和S2010=S671×3=671×2=1342.
故答案为:1342.
∴x3=|x2-x1|=1-a
∴该数列的前3项的和S3=1+a+(1-a)=2
∵数列{xn}周期为3,
∴该数列的前2013项的和S2010=S671×3=671×2=1342.
故答案为:1342.
练习册系列答案
相关题目