题目内容
(文)已知数列{an}满足an+1=an+
,且a1=1,则an=
1 |
n(n+1) |
2-
1 |
n |
2-
.1 |
n |
分析:由an+1=an+
,得an+1-an=
=
-
,利用累加法求出通项即可.
1 |
n(n+1) |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
解答:解:由an+1=an+
,得an+1-an=
=
-
当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
(
-
)+(
-
)+…+(1-
)+1
=1-
+1
=2-
当n=1时,a1=1也符合,所以an=2-
故答案为:2-
1 |
n(n+1) |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
(
1 |
n-1 |
1 |
n |
1 |
n-2 |
1 |
n-1 |
1 |
2 |
=1-
1 |
n |
=2-
1 |
n |
当n=1时,a1=1也符合,所以an=2-
1 |
n |
故答案为:2-
1 |
n |
点评:本题考查数列的递推公式,通项公式.考查累加法在数列中的应用.考查转化计算能力.
练习册系列答案
相关题目