题目内容

20.为提高在校学生的安全意识,防止安全事故的发生,学校拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{25}$C.$\frac{1}{15}$D.$\frac{1}{30}$

分析 由已知利用组合数公式先求出基本事件总数,再利用列举法求出选择的3天恰好为连续3天包含的基本事件的个数,由此能求出选择的3天恰好为连续3天的概率.

解答 解:学校拟在未来的连续10天中随机选择3天进行紧急疏散演练,
基本事件总数n=${C}_{10}^{3}$=120,
选择的3天恰好为连续3天包含的基本事件为:(122,3),(2,3,4),(3,4,5),
(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),共8个,
∴选择的3天恰好为连续3天的概率p=$\frac{8}{120}=\frac{1}{15}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关题目
15.“开门大吉”是某电视台推出的游戏益智节目.选手面对1-4号4扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.正确回答每一扇门后,选手可自由选择带着奖金离开比赛,还可继续挑战后面的门以获得更多奖金(奖金金额累加),但是一旦回答错误,奖金将清零,选手也会离开比赛.在一次场外调查中,发现参加比赛的选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否与年龄有关?说明你的理由.(下面的临界值表供参考)
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(理)(2)若某选手能正确回答第一、二、三、四扇门的概率分别为$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{3}$,正确回答一个问题后,选择继续回答下一个问题的概率是$\frac{1}{2}$,且各个问题回答正确与否互不影响.设该选手所获梦想基金总数为ξ,求ξ的分布列及数学期望.
第一扇门第二扇门第三扇门第四扇门
1000200030005000
每扇门对应的梦想基金:(单位:元)
(文)(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网