题目内容

已知f(x)=logsinθx,θ∈(0,
π
2
)
,设a=f(
sinθ+cosθ
2
)
b=f(
sinθ•cosθ
)
c=f(
sin2θ
sinθ+cosθ
)
,那么a、b、c的大小关系是
a≤b≤c
a≤b≤c
分析:化简a为logsinθ
sinθ+cosθ
2
,b为logsinθ
sinθcosθ
,c为logsinθ
2sinθ•cosθ
sinθ+cosθ
,利用基本不等式可得 
sinθ+cosθ
2
sinθcosθ
,用比较法可得
sinθcosθ
2sinθ•cosθ
sinθ+cosθ
.再由函数y=logsinθx是单调减函数可得a、b、c的大小关系.
解答:解:由题意可得a=f(
sinθ+cosθ
2
)
=logsinθ
sinθ+cosθ
2

b=f(
sinθ•cosθ
)
=logsinθ
sinθcosθ

c=f(
sin2θ
sinθ+cosθ
)
=logsinθ
2sinθ•cosθ
sinθ+cosθ

∵θ∈( 0,
π
2
),∴1>sinθ>0,1>cosθ>0,∴
sinθ+cosθ
2
sinθcosθ

logsinθ
sinθ+cosθ
2
logsinθ
sinθcosθ
,即 a≤b.
(
sinθcosθ
)
2
-(
2sinθ•cosθ
sinθ+cosθ
)
2
=sinθcosθ-
4sin2θcos2θ
1+2sinθcosθ
=
sinθcosθ +2sin2θcos2θ-4sin2θcos2θ
1+2sinθcosθ
=
sinθcosθ -2sin2θcos2θ
1+2sinθcosθ
 
=
sinθcosθ(1 -2sinθcosθ)
1+2sinθcosθ
=
sinθcosθ(sinθ-cosθ)2
1+2sinθcosθ
≥0,
sinθcosθ
2sinθ•cosθ
sinθ+cosθ

综上可得 
sinθ+cosθ
2
sinθcosθ
2sinθ•cosθ
sinθ+cosθ
.再由函数y=logsinθx是单调减函数可得,
a≤b≤c,
故答案为a≤b≤c.
点评:本题主要考查复合函数的单调性,基本不等式的应用,比较两个数大小的方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网