题目内容
已知(
-
)n的展开式中,第五项与第三项的二项式系数之比为14∶3,求展开式中的常数项.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054337833325.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054337849450.png)
180
依题意
∶
=14∶3,即3
=14
,
∴
=
,
∴n=10.
设第r+1项为常数项,
又Tr+1=
(
)10-r(-
)r
=(-2)r![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054338005439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240543380671341.jpg)
令
=0,得r=2.
∴T3=
(-2)2=180,
即常数项为180.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054337880408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054337896434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054337880408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054337896434.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054337958988.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054337989745.png)
∴n=10.
设第r+1项为常数项,
又Tr+1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054338005439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054337833325.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054337849450.png)
=(-2)r
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054338005439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240543380671341.jpg)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054338098576.png)
∴T3=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054338114446.png)
即常数项为180.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目