题目内容

若函数f(x)=x3+
1
x
,则
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于(  )
分析:由于函数f(x)=x3+
1
x
,可得f′(x)的解析式以及f′(1)的值,再由
 
lim
△x→0
f(△x-1)+f(1)
2△x
=
1
2
 
lim
△x→0
f(△x-1)-f(-1)
△x
=
1
2
f′(-1),运算求得结果.
解答:解:由于函数f(x)=x3+
1
x
,则f′(x)=3x2-
1
x2
,f′(1)=3-1=2,
 
lim
△x→0
f(△x-1)+f(1)
2△x
=
1
2
 
lim
△x→0
f(△x-1)-f(-1)
△x
=
1
2
f′(-1)=
1
2
×2=1,
故选 D.
点评:本题主要考查函数在某一点的导数的定义,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网