题目内容
(满分14分)随机将这2n个连续正整数分成A,B两组,每组n个数,A组最小数为,最大数为;B组最小数为,最大数为,记
(1)当时,求的分布列和数学期望;
(2)令C表示事件与的取值恰好相等,求事件C发生的概率;
(3)对(2)中的事件C,表示C的对立事件,判断和的大小关系,并说明理由。
(1)当时,求的分布列和数学期望;
(2)令C表示事件与的取值恰好相等,求事件C发生的概率;
(3)对(2)中的事件C,表示C的对立事件,判断和的大小关系,并说明理由。
(1)
(2)当时,,当时
(3)当时,当时,
2 | 3 | 4 | 5 | |
P |
(3)当时,当时,
试题分析:(1)当时,将6个正整数平均分成A,B两组,不同的分组方法共有种,所有可能值为2,3,4,5.对应组数分别为4,6,6,4,对应概率为,,,,(2)和恰好相等的所有可能值为当和恰好相等且等于时,不同的分组方法有2种;当和恰好相等且等于时,不同的分组方法有2种;当和恰好相等且等于时,不同的分组方法有2种;当和恰好相等且等于时,不同的分组方法有2种;以此类推:和恰好相等且等于时,不同的分组方法有2种;所以当时,
当时(3)先归纳:当时,因此当时,即证当时,这可用数学归纳法证明. 当时,,利用阶乘作差可得大小.
试题解析:(1)当时,所有可能值为2,3,4,5.将6个正整数平均分成A,B两组,不同的分组方法共有种,所以的分布列为
2 | 3 | 4 | 5 | |
P |
(2)和恰好相等的所有可能值为
又和恰好相等且等于时,不同的分组方法有2种;
和恰好相等且等于时,不同的分组方法有2种;
和恰好相等且等于时,不同的分组方法有2种;
所以当时,
当时
(3)由(2)当时,因此
而当时,理由如下:
等价于①
用数学归纳法来证明:
当时,①式左边①式右边所以①式成立
假设时①式成立,即成立
那么,当时,①式左边
=①式右边
即当时①式也成立
综合得,对于的所有正整数,都有成立
练习册系列答案
相关题目