题目内容
17.若$cos(2π-α)=\frac{{2\sqrt{2}}}{3}$,且$α=(-\frac{π}{2},0)$,则sin(π+α)=$\frac{1}{3}$.分析 已知等式利用诱导公式化简,整理求出cosα的值,根据α的范围利用同角三角函数间基本关系求出sinα的值,原式利用诱导公式化简后代入计算即可求出值.
解答 解:∵cos(2π-α)=cosα=$\frac{2\sqrt{2}}{3}$,且α∈(-$\frac{π}{2}$,0),
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{1}{3}$,
则原式=-sinα=$\frac{1}{3}$,
故答案为:$\frac{1}{3}$
点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目
7.已知i是虚数单位,若$\frac{3+i}{z}=1-i$,则z在复平面内对应的点在( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
8.sin30°cos15°+cos30°sin15°的值是( )
A. | $\sqrt{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{{\sqrt{6}-\sqrt{2}}}{4}$ |
5.函数f(x)=loga(x3-3ax)(a>0,a≠1)在区间(-$\sqrt{2}$,-1)内单调递减,a的取值范围是( )
A. | [2,+∞) | B. | (1,$\sqrt{2}$) | C. | [$\frac{2}{3}$,1) | D. | [$\frac{2}{3}$,1)∪[2,+∞) |
9.生物兴趣小组的同学到野外调查某种植物的生长情况,共测量了k∈Z株该植物的高度(单位:厘米),获得数据如下:
6,7,8,9,10,14,16,17,17,18,19,20,20,21,24,26,26,27,28,29,29,30,30,30,31,31,33,36,37,41.
根据上述数据得到样本的频率分布表如下:
(1)确定样本频率分布表中n1,n2,f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)用(2)的频率分布直方图估计该植物生长高度的平均值.
6,7,8,9,10,14,16,17,17,18,19,20,20,21,24,26,26,27,28,29,29,30,30,30,31,31,33,36,37,41.
根据上述数据得到样本的频率分布表如下:
分组 | 频数 | 频率 |
[5,15] | 6 | 0.2 |
(15,25] | 9 | 0.3 |
(25,35] | n1 | f1 |
(35,45] | n2 | f2 |
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)用(2)的频率分布直方图估计该植物生长高度的平均值.
12.函数y=sin2x的导数是( )
A. | y=2sinx | B. | y=sin2x | C. | y=2sin2x | D. | y=2cosx |